Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Au Nanocube and Nanocuboid
3.2. Au Nanotriangle and Hexagonal Nanoplate
3.3. Au and Ag Bowtie Nanoantennas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shimomura, K.; Nakane, Y.; Ishida, T.; Tatsuma, T. Photofabrication of chiral plasmonic nanospiroids. Appl. Phys. Lett. 2023, 122, 151109. [Google Scholar] [CrossRef]
- Saito, K.; Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 2018, 18, 3209–3212. [Google Scholar] [CrossRef] [PubMed]
- Bhanushali, S.; Mahasivam, S.; Ramanathan, R.; Singh, M.; Mayes, E.L.H.; Murdoch, B.J.; Bansal, V.; Sastry, M. Photomodulated spatially confined chemical reactivity in a single silver nanoprism. ACS Nano 2020, 14, 11100–11109. [Google Scholar] [CrossRef] [PubMed]
- Tangeysh, B.; Tibbetts, K.M.; Odhner, J.H.; Wayland, B.B.; Levis, R.J. Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction. Nano Lett. 2015, 15, 3377–3382. [Google Scholar] [CrossRef]
- Zhai, Y.; DuChene, J.S.; Wang, Y.C.; Qiu, J.; Johnston-Peck, A.C.; You, B.; Guo, W.; DiCiaccio, B.; Qian, K.; Zhao, E.W.; et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889–895. [Google Scholar] [CrossRef]
- Cortés, E.; Xie, W.; Cambiasso, J.; Jermyn, A.S.; Sundararaman, R.; Narang, P.; Schlücker, S.; Maier, S.A. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 2017, 8, 14880. [Google Scholar] [CrossRef]
- Nan, L.; Giraldez-Martinez, J.; Stefancu, A.; Zhu, L.; Liu, M.; Govorov, A.O.; Besteiro, L.V.; Cortes, E. Investigating plasmonic catalysis kinetics on hot-spot engineered nanoantennae. Nano Lett. 2023, 23, 2883–2889. [Google Scholar] [CrossRef]
- Tanimoto, H.; Hashiguchi, K.; Ohmura, S. Growth inhibition of hexagonal silver nanoplates by localized surface plasmon resonance. J. Phys. Chem. C 2015, 119, 19318–19325. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, C.; Lu, H.; Zou, T.; Singh, S.C.; Yu, Z.; Yao, C.; Zheng, X.; Xing, J.; Zou, Y.; et al. SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag2S quantum dots/plasmonic bowtie nanoantenna composite system. Photonics Res. 2020, 8, 548–563. [Google Scholar] [CrossRef]
- Liu, T.; Besteiro, L.V.; Liedl, T.; Correa-Duarte, M.A.; Wang, Z.; Govorov, A.O. Chiral plasmonic nanocrystals for generation of hot electrons: Toward polarization-sensitive photochemistry. Nano Lett. 2019, 19, 1395–1407. [Google Scholar] [CrossRef]
- Khorashad, L.K.; Besteiro, L.V.; Correa-Duarte, M.A.; Burger, S.; Wang, Z.M.; Govorov, A.O. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc. 2020, 142, 4193–4205. [Google Scholar] [CrossRef] [PubMed]
- Besteiro, L.V.; Movsesyan, A.; Ávalos-Ovando, O.; Lee, S.; Cortés, E.; Correa-Duarte, M.A.; Wang, Z.M.; Govorov, A.O. Local growth mediated by plasmonic hot carriers: Chirality from achiral nanocrystals using circularly polarized light. Nano Lett. 2021, 21, 10315–10324. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.C.; Kuo, M.K.; Liaw, J.W. Winding Poynting vector of light around plasmonic nanostructure. J. Quant. Spectrosc. Radiat. Transf. 2022, 278, 108005. [Google Scholar] [CrossRef]
- Nieto-Vesperinas, M.; Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Phys. Rev. Res. 2021, 3, 043080. [Google Scholar] [CrossRef]
- Lipkin, D.M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 1964, 5, 696. [Google Scholar] [CrossRef]
- Poulikakos, L.V.; Thureja, P.; Stollmann, A.; Leo, E.D.; Norris, D.J. Chiral light design and detection inspired by optical antenna theory. Nano Lett. 2018, 18, 4633–4640. [Google Scholar] [CrossRef] [PubMed]
- Scha¨ferling, M.; Dregely, D.; Hentschel, M.; Giessen, H. Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys. Rev. X 2012, 2, 031010. [Google Scholar]
- Okamoto, H. Optical manipulation with nanoscale chiral fields and related photochemical phenomena. J. Photochem. Photobiol. C Photochem. 2022, 52, 100531. [Google Scholar] [CrossRef]
- Trügler, A. Optical Properties of Metallic Nanoparticles: Basic Principles and Simulation; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Solis, D.M.; Taboada, J.M.; Obelleiro, F.; Liz-Marzan, L.M.; de Abajo, F.J.G. Toward ultimate nanoplasmonics modeling. ACS Nano 2014, 8, 7559–7570. [Google Scholar] [CrossRef]
- Hohenester, U.; Krenn, J. Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach. Phys. Rev. B 2005, 72, 195429. [Google Scholar] [CrossRef]
- Fischer, H.; Martin, O.J.F. Engineering the optical response of plasmonic nanoantennas. Opt. Express 2008, 16, 9144–9154. [Google Scholar] [CrossRef] [PubMed]
- Taboada, J.M.; Rivero, J.; Obelleiro, F.; Araújo, M.G.; Landesa, L. Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J. Opt. Soc. Am. A 2011, 28, 1341–1348. [Google Scholar] [CrossRef]
- Ku, Y.C.; Liaw, J.W.; Mao, S.Y.; Kuo, M.K. Conversion of a helical surface plasmon polariton into a spiral surface plasmon polariton at the outlet of a metallic nanohole. ACS Omega 2022, 7, 10420–10428. [Google Scholar] [CrossRef] [PubMed]
- Liaw, J.W.; Mao, S.Y.; Luo, J.Y.; Ku, Y.C.; Kuo, M.K. Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires. Opt. Express 2021, 29, 18876–18888. [Google Scholar] [CrossRef] [PubMed]
- Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S.; Xiong, Q. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 2013, 4, 496–501. [Google Scholar] [CrossRef]
- Schlather, A.E.; Large, N.; Urban, A.S.; Nordlander, P.; Halas, N.J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286. [Google Scholar] [CrossRef]
- Chorsi, H.T.; Gedney, S.D. Efficient high-order analysis of bowtie nanoantennas using the locally corrected Nyström method. Opt. Express 2015, 23, 31452–31459. [Google Scholar] [CrossRef]
- Ding, W.; Bachelot, R.; Kostcheev, S.; Royer, P.; de Lamaestre, R.E. Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles. J. Appl. Phys. 2010, 108, 124314. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, L.; Wang, Y.; Liu, P.; Jiang, H.; Xu, Z.; Ma, Z.; Oren, S.; Chow, E.K.C.; Lu, M.; et al. Tunable optical nanoantennas incorporating bowtie nanoantenna arrays with stimuli-responsive polymer. Sci. Rep. 2015, 5, 18567. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, Y. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep. 2015, 5, 14788. [Google Scholar] [CrossRef]
- Kaniber, K.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J.J. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci. Rep. 2016, 6, 23203. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, 11823. [Google Scholar] [CrossRef] [PubMed]
- Bitton, O.; Gupta, S.N.; Houben, L.; Kvapil, M.; Křápek, V.; Šikola, T.; Haran, G. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun. 2020, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.; Hughes, S. Dissipative modes, Purcell factors, and directional beta factors in gold bowtie nanoantenna structures. Phys. Rev. B 2020, 102, 155301. [Google Scholar] [CrossRef]
- Dongare, P.D.; Zhao, Y.; Renard, D.; Yang, J.; Neumann, O.; Metz, J.; Yuan, L.; Alabastri, A.; Nordlander, P.; Halas, N.J. A 3D plasmonic antenna-reactor for nanoscale thermal hotspots and gradients. ACS Nano 2021, 15, 8761–8769. [Google Scholar] [CrossRef] [PubMed]
- Stratton, J.A.; Chu, L.J. Diffraction theory of electromagnetic waves. Phys. Rev. 1939, 56, 99–107. [Google Scholar] [CrossRef]
- Liaw, J.W. Simulation of surface plasmon resonance of metallic nanoparticles by boundary-element method. J. Opt. Soc. Am. A 2006, 23, 108–116. [Google Scholar] [CrossRef]
- Liaw, J.W. New surface integral equations for the light scatterering of multi-metallic nanoscattererers. Eng. Anal. Bound. Elem. 2007, 31, 299310. [Google Scholar] [CrossRef]
- Liaw, J.W. Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1441–1447. [Google Scholar] [CrossRef]
- Rao, S.M.; Wilton, D.R.; Glisson, A.W. Electromagnetic scatterering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 1982, 30, 409–418. [Google Scholar] [CrossRef]
- Barreda, Á.I.; Gutiérrez, Y.; Sanz, J.M.; González, F.; Moreno, F. Polarimetric response of magnetodielectric core–shell nanoparticles: An analysis of scattering directionality and sensing. Nanotechnology 2016, 27, 234002. [Google Scholar] [CrossRef] [PubMed]
- Liaw, J.W.; Chen, H.C.; Kuo, M.K. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka. Nanoscale Res Lett. 2013, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Gargiulo, J.; Berté, R.; Li, Y.; Maier, S.A.; Cortés, E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 2019, 52, 2525–2535. [Google Scholar] [CrossRef]
- Tan, L.; Yu, S.J.; Jin, Y.; Li, J.; Wang, P.P. Inorganic chiral hybrid nanostructures for tailored chiroptics and chirality-dependent photocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202112400. [Google Scholar] [CrossRef]
- Liaw, J.W.; Tsai, H.Y. Theoretical investigation of plasmonic enhancement of silica-coated gold nanorod on molecular fluorescence. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 470–479. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Boston, MA, USA, 1985; Available online: https://www.filmetrics.com/refractive-index-database/Si/Silicon (accessed on 5 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, Y.-C.; Kuo, M.-K.; Liaw, J.-W. Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna. Nanomaterials 2024, 14, 61. https://doi.org/10.3390/nano14010061
Ku Y-C, Kuo M-K, Liaw J-W. Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna. Nanomaterials. 2024; 14(1):61. https://doi.org/10.3390/nano14010061
Chicago/Turabian StyleKu, Yun-Cheng, Mao-Kuen Kuo, and Jiunn-Woei Liaw. 2024. "Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna" Nanomaterials 14, no. 1: 61. https://doi.org/10.3390/nano14010061
APA StyleKu, Y. -C., Kuo, M. -K., & Liaw, J. -W. (2024). Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna. Nanomaterials, 14(1), 61. https://doi.org/10.3390/nano14010061