Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric–Semiconductor–Lossy Metal Film Stacks
Abstract
:1. Introduction
2. Methods
2.1. Device Fabrication
2.2. Simulation and Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Wang, L.; Cui, Q.Y.; Guo, L.J. Planar Metasurfaces Enable High-Efficiency Colored Perovskite Solar Cells. Adv. Sci. 2018, 5, 1800836. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.Y.; Dai, W.; Wang, W.Q.; Ou, C.H.; Xu, Q.Q.; Zhou, Z.J.; Wen, Z.J.; Liu, C.; Hao, J.M.; Guan, Z.Q.; et al. Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials. Nanophotonics 2021, 10, 1683–1690. [Google Scholar] [CrossRef]
- Liu, X.L.; Tyler, T.; Starr, T.; Starr, A.F.; Jokerst, N.M.; Padilla, W.J. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Phys. Rev. Lett. 2011, 107, 045901. [Google Scholar] [CrossRef]
- Li, W.; Valentine, J. Metamaterial Perfect Absorber Based Hot Electron Photodetection. Nano Lett. 2014, 14, 3510–3514. [Google Scholar] [CrossRef] [PubMed]
- Abedini Dereshgi, S.; Ghobadi, A.; Hajian, H.; Butun, B.; Ozbay, E. Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers: The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks. Sci. Rep. 2017, 7, 14872. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.X.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.L.; Fang, N.X. Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Li, W.-Z.; Tseng, L.-C.; Yang, C.-F. Investigation of a Multi-Layer Absorber Exhibiting the Broadband and High Absorptivity in Red Light and Near-Infrared Region. Nanomaterials 2023, 13, 766. [Google Scholar] [CrossRef] [PubMed]
- Li, C.S.; Pan, R.H.; Geng, G.Z.; Zheng, R.X.; Gu, C.Z.; Guo, H.M.; Li, J.J. Strong and Omnidirectional Light Absorption from Ultraviolet to Near-Infrared Using GST Metasurface. Laser Photon. Rev. 2023, 17, 2200364. [Google Scholar] [CrossRef]
- Massiot, I.; Vandamme, N.; Bardou, N.; Dupuis, C.; Lemaitre, A.; Guillemoles, J.F.; Collin, S. Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers. ACS Photon. 2014, 1, 878–884. [Google Scholar] [CrossRef]
- Lu, J.Y.; Nam, S.H.; Wilke, K.; Raza, A.; Lee, Y.E.; AlGhaferi, A.; Fang, N.X.; Zhang, T.J. Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers. Adv. Opt. Mater. 2016, 4, 1255–1264. [Google Scholar] [CrossRef]
- Ghobadi, A.; Dereshgi, S.A.; Hajian, H.; Birant, G.; Butun, B.; Bek, A.; Ozbay, E. 97 percent light absorption in an ultrabroadband frequency range utilizing an ultrathin metal layer: Randomly oriented, densely packed dielectric nanowires as an excellent light trapping scaffold. Nanoscale 2017, 9, 16652–16660. [Google Scholar] [PubMed]
- Qian, Q.Y.; Sun, T.; Yan, Y.; Wang, C.H. Large-Area Wide-Incident-Angle Metasurface Perfect Absorber in Total Visible Band Based on Coupled Mie Resonances. Adv. Opt. Mater. 2017, 5, 1700064. [Google Scholar] [CrossRef]
- Ji, C.G.; Lee, K.T.; Xu, T.; Zhou, J.; Park, H.J.; Guo, L.J. Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers. Adv. Opt. Mater. 2017, 5, 1700368. [Google Scholar] [CrossRef]
- Musa, A.; Alam, T.; Islam, M.T.; Hakim, M.L.; Rmili, H.; Alshammari, A.S.; Islam, M.S.; Soliman, M.S. Broadband PlasmonicMetamaterial Optical Absorber for the Visible to Near-Infrared Region. Nanomaterials 2023, 13, 626. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Ansari, N.; Vazayefi, M. MoS2-based absorbers with whole visible spectrum coverage and high efficiency. Sci. Rep. 2022, 12, 6313. [Google Scholar]
- Cao, T.; Wei, C.W.; Simpson, R.E.; Zhang, L.; Cryan, M.J. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 2014, 4, 3955. [Google Scholar] [CrossRef]
- Lin, Z.H.; Long, Y.X.; Zhu, X.P.; Dai, P.; Liu, F.; Zheng, M.J.; Zhou, Y.M.; Duan, H.G. Extending the color of ultra-thin gold films to blue region via Fabry-Perot-Cavity-Resonance-Enhanced reflection. Optik 2019, 178, 992–998. [Google Scholar] [CrossRef]
- Ghobadi, A.; Hajian, H.; Butun, B.; Ozbay, E. Strong Light-Matter Interaction in Lithography-Free Planar Metamaterial Perfect Absorbers. ACS Photon. 2018, 5, 4203–4221. [Google Scholar] [CrossRef]
- Deng, H.X.; Li, Z.G.; Stan, L.; Rosenmann, D.; Czaplewski, D.; Gao, J.; Yang, X.D. Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 2015, 40, 2592–2595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.C.; Wang, Y.; Zhu, Y.C.; Zhang, W.; Yu, Y.T. Lithography-free flexible perfect broadband absorber in visible light based on an all-dielectric multilayer structure. Opt. Lett. 2020, 45, 5464–5467. [Google Scholar] [CrossRef]
- Wang, J.X.; Dong, J.N.; Cheng, Y.G.; Xie, Z.L.; Chen, Y.H. Visible to near-infrared nearly perfect absorption from alternate silica and chromium layers deposited by magnetron sputtering. Opt. Lett. 2021, 46, 4582–4584. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.Y.; Wang, M.W.; Wu, Z.H.; Wang, X.P.; Liu, J. Design of multilayer planar film structures for near-perfect absorption in the visible to near-infrared. Opt. Express 2022, 30, 35219–35231. [Google Scholar] [CrossRef] [PubMed]
- Chirumamilla, M.; Roberts, A.S.; Ding, F.; Wang, D.; Kristensen, P.K.; Bozhevolnyi, S.I.; Pedersen, K. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt. Mater. Express 2016, 6, 2704–2714. [Google Scholar] [CrossRef]
- Li, Z.Y.; Palacios, E.; Butun, S.; Kocer, H.; Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 2015, 5, 15137. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.L.; Zhou, J.J.; Chen, X.; Wu, J.; Chen, Z.G.; Wu, S.; Zhao, Y. Lithography-free wide-angle polarization-independent ultra-broadband absorber based on anti-reflection effect. Opt. Express 2022, 30, 16847–16855. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, H.X.; Peng, W.; Li, R.; Chu, S.W.; Yu, L.; Wang, Q. Bidirectional band-switchable nano-film absorber from narrowband to broadband. Opt. Express 2021, 29, 5110–5120. [Google Scholar] [CrossRef]
- Ghobadi, A.; Hajian, H.; Rashed, A.R.; Butun, B.; Ozbay, E. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photon. Res. 2018, 6, 168–176. [Google Scholar] [CrossRef]
- Yang, C.Y.; Ji, C.G.; Shen, W.D.; Lee, K.T.; Zhang, Y.G.; Liu, X.; Guo, L.J. Compact Multilayer Film Structures for Ultrabroadband, Omnidirectional, and Efficient Absorption. ACS Photon. 2016, 3, 590–596. [Google Scholar] [CrossRef]
- Yang, C.Y.; Zheng, T.T.; Luo, H.; Li, K.; Zhang, Y.G.; Zhu, M.P.; Shao, J.D.; Shen, W.D. Visible-infrared (0.4–20 μm) ultra-broadband absorber based on cascade film stacks. Appl. Phys. Lett. 2021, 118, 143501. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Kang, B.; Hong, J.; Rha, J.J.; Lee, M. Broadband visible and near-infrared absorbers implemented with planar nanolayered stacks. ACS Appl. Nano Mater. 2020, 3, 2978–2986. [Google Scholar] [CrossRef]
- Jung, G.H.; Yoo, S.; Kim, J.S.; Park, Q.H. Maximal Visible Light Energy Transfer to Ultrathin Semiconductor Films Enabled by Dispersion Control. Adv. Opt. Mater. 2019, 7, 1801229. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.H.; Vasudev, A.P.; Schoen, D.T.; Kim, H.; Hasman, E.; Brongersma, M.L. Omnidirectional Near-Unity Absorption in an Ultrathin Planar Semiconductor Layer on a Metal Substrate. ACS Photon. 2014, 1, 812–821. [Google Scholar] [CrossRef]
- Liu, D.; Yu, H.T.; Yang, Z.; Duan, Y.Y. Ultrathin planar broadband absorber through effective medium design. Nano Res. 2016, 9, 2354–2363. [Google Scholar] [CrossRef]
- Jin, Y.; Park, J.; Rah, Y.; Shim, J.; Yu, K. Ultrahigh omnidirectional, broadband, and polarization-independent optical absorption over the visible wavelengths by effective dispersion engineering. Sci. Rep. 2019, 9, 9866. [Google Scholar] [CrossRef]
- Yang, Z.M.; Ji, C.G.; Liu, D.; Guo, L.J. Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers. Adv. Opt. Mater. 2019, 7, 1900739. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Hu, J.; Li, W.; Yang, Z. Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric–Semiconductor–Lossy Metal Film Stacks. Nanomaterials 2023, 13, 2726. https://doi.org/10.3390/nano13192726
Ma Y, Hu J, Li W, Yang Z. Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric–Semiconductor–Lossy Metal Film Stacks. Nanomaterials. 2023; 13(19):2726. https://doi.org/10.3390/nano13192726
Chicago/Turabian StyleMa, Yuanchen, Junhao Hu, Wenfeng Li, and Zhengmei Yang. 2023. "Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric–Semiconductor–Lossy Metal Film Stacks" Nanomaterials 13, no. 19: 2726. https://doi.org/10.3390/nano13192726
APA StyleMa, Y., Hu, J., Li, W., & Yang, Z. (2023). Angle-Insensitive Ultrathin Broadband Visible Absorber Based on Dielectric–Semiconductor–Lossy Metal Film Stacks. Nanomaterials, 13(19), 2726. https://doi.org/10.3390/nano13192726