Thermoelectric Properties of Mg3(Bi,Sb)2 under Finite Temperatures and Pressures: A First-Principles Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of Mg3Bi2−vSbv
2.2. Method of DFT Calculations
2.3. Method of Electrical Transport Properties
2.4. Method of Thermal Properties
3. Results
3.1. Lattice Thermal Conductivity of Mg3Sb2
3.2. Thermoelectricity Properties of Ternary Mg3Bi2−vSbv
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, L. Thermoelectric materials step up. Nat. Mater. 2016, 15, 691–692. [Google Scholar] [CrossRef] [PubMed]
- DiSalvo, F.J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Shi, X.; Chen, L. Cu-based thermoelectric materials. Energy Storage Mater. 2016, 3, 85–97. [Google Scholar] [CrossRef]
- Mehdizadeh Dehkordi, A.; Zebarjadi, M.; He, J.; Tritt, T.M. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R Rep. 2015, 97, 1–22. [Google Scholar] [CrossRef]
- Moshwan, R.; Yang, L.; Zou, J.; Chen, Z.-G. Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges. Adv. Funct. Mater. 2017, 27, 1703278. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Liu, W.; Yan, X.; Chen, G.; Ren, Z. Recent advances in thermoelectric nanocomposites. Nano Energy 2012, 1, 42–56. [Google Scholar] [CrossRef]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Tripathi, N.; Pavelyev, V.; Sharma, P.; Kumar, S.; Rymzhina, A.; Mishra, P. Review of titanium trisulfide (TiS3): A novel material for next generation electronic and optical devices. Mater. Sci. Semicond. Process. 2021, 127, 105699. [Google Scholar] [CrossRef]
- Kim, S.; Lee, C.; Lim, Y.S.; Shim, J.-H. Investigation for Thermoelectric Properties of the MoS2 Monolayer–Graphene Heterostructure: Density Functional Theory Calculations and Electrical Transport Measurements. ACS Omega 2021, 6, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kumanek, B.; Stando, G.; Stando, P.; Matuszek, K.; Milowska, K.Z.; Krzywiecki, M.; Gryglas-Borysiewicz, M.; Ogorzałek, Z.; Payne, M.C.; MacFarlane, D.; et al. Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above. Sci. Rep. 2021, 11, 8649. [Google Scholar] [CrossRef]
- Gaul, A.; Peng, Q.; Singh, D.J.; Ramanath, G.; Borca-Tasciuc, T. Pressure-induced insulator-to-metal transitions for enhancing thermoelectric power factor in bismuth telluride-based alloys. Phys. Chem. Chem. Phys. 2017, 19, 12784–12793. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cui, H.; Ma, D.; He, C. The elastic and thermoelectric properties of the Zintl compound Ca5Al2Sb6 under high pressure. J. Appl. Phys. 2014, 116, 223709. [Google Scholar] [CrossRef]
- Hao, S.; Dravid, V.P.; Kanatzidis, M.G.; Wolverton, C. Research Update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S. APL Mater. 2016, 4, 104505. [Google Scholar] [CrossRef]
- Hao, S.; Shi, F.; Dravid, V.P.; Kanatzidis, M.G.; Wolverton, C. Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe. Chem. Mater. 2016, 28, 3218–3226. [Google Scholar] [CrossRef]
- Ma, Y.; Eremets, M.; Oganov, A.R.; Xie, Y.; Trojan, I.; Medvedev, S.; Lyakhov, A.O.; Valle, M.; Prakapenka, V. Transparent dense sodium. Nature 2009, 458, 182–185. [Google Scholar] [CrossRef]
- Matsuoka, T.; Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 2009, 458, 186–189. [Google Scholar] [CrossRef]
- Seeger, K. Semiconductor Physics; Springer: Wien, Austria, 1973. [Google Scholar]
- Morozova, N.V.; Korobeinikov, I.V.; Ovsyannikov, S.V. Strategies and challenges of high-pressure methods applied to thermoelectric materials. J. Appl. Phys. 2019, 125, 220901. [Google Scholar] [CrossRef]
- Besson, J.M.; Paul, W.; Calawa, A.R. Tuning of PbSe Lasers by Hydrostatic Pressure from 8 to 22 μ. Phys. Rev. 1968, 173, 699–713. [Google Scholar] [CrossRef]
- Nabi, Z.; Abbar, B.; Méçabih, S.; Khalfi, A.; Amrane, N. Pressure dependence of band gaps in PbS, PbSe and PbTe. Comput. Mater. Sci. 2000, 18, 127–131. [Google Scholar] [CrossRef]
- Li, C.-Y.; Ruoff, A.L.; Spencer, C.W. Effect of Pressure on the Energy Gap of Bi2Te3. J. Appl. Phys. 1961, 32, 1733–1735. [Google Scholar] [CrossRef]
- Peng, Q.; Yuan, X.; Zhao, S.; Chen, X.-J. Lattice Thermal Conductivity of Mg3(Bi,Sb)2 Nanocomposites: A First-Principles Study. Nanomaterials 2023, 13, 2938. [Google Scholar] [CrossRef] [PubMed]
- Kanno, T.; Tamaki, H.; Yoshiya, M.; Uchiyama, H.; Maki, S.; Takata, M.; Miyazaki, Y. High-Density Frenkel Defects as Origin of N-Type Thermoelectric Performance and Low Thermal Conductivity in Mg3Sb2-Based Materials. Adv. Funct. Mater. 2021, 31, 2008469. [Google Scholar] [CrossRef]
- Imasato, K.; Kang, S.D.; Ohno, S.; Snyder, G.J. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. Mater. Horiz. 2018, 5, 59–64. [Google Scholar] [CrossRef]
- Pan, Y.; Yao, M.; Hong, X.; Zhu, Y.; Fan, F.; Imasato, K.; He, Y.; Hess, C.; Fink, J.; Yang, J.; et al. Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance. Energy Environ. Sci. 2020, 13, 1717–1724. [Google Scholar] [CrossRef]
- Shi, X.; Sun, C.; Bu, Z.; Zhang, X.; Wu, Y.; Lin, S.; Li, W.; Faghaninia, A.; Jain, A.; Pei, Y. Revelation of Inherently High Mobility Enables Mg3Sb2 as a Sustainable Alternative to n-Bi2Te3 Thermoelectrics. Adv. Sci. 2019, 6, 1802286. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, C.; Yao, H.; Bai, F.; Yin, L.; Li, X.; Li, S.; Xue, W.; Wang, Y.; Cao, F.; et al. High-Performance N-type Mg3Sb2 towards Thermoelectric Application near Room Temperature. Adv. Funct. Mater. 2020, 30, 1906143. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Pedersen, S.H.; Yin, H.; Hung, L.T.; Iversen, B.B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 2017, 8, 13901. [Google Scholar] [CrossRef] [PubMed]
- Imasato, K.; Kang, S.D.; Snyder, G.J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery. Energy Environ. Sci. 2019, 12, 965–971. [Google Scholar] [CrossRef]
- Tamaki, H.; Sato, H.K.; Kanno, T. Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance. Adv. Mater. 2016, 28, 10182–10187. [Google Scholar] [CrossRef] [PubMed]
- Imasato, K.; Wood, M.; Kuo, J.J.; Snyder, G.J. Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5. J. Mater. Chem. A 2018, 6, 19941–19946. [Google Scholar] [CrossRef]
- Wood, M.; Kuo, J.J.; Imasato, K.; Snyder, G.J. Improvement of Low-Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg-Vapor Annealing. Adv. Mater. 2019, 31, 1902337. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Iversen, B.B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. NPJ Comput. Mater. 2019, 5, 76. [Google Scholar] [CrossRef]
- Shuai, J.; Wang, Y.; Kim, H.S.; Liu, Z.; Sun, J.; Chen, S.; Sui, J.; Ren, Z. Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2. Acta Mater. 2015, 93, 187–193. [Google Scholar] [CrossRef]
- Ao, D.-W.; Liu, W.-D.; Chen, Y.-X.; Wei, M.; Jabar, B.; Li, F.; Shi, X.-L.; Zheng, Z.-H.; Liang, G.-X.; Zhang, X.-H.; et al. Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi2Te3-Based Flexible Thin-Films. Adv. Sci. 2022, 9, 2103547. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, S.; Qiu, P.; Peng, L.; Wei, T.-R.; Zhang, Z.; Shi, X.; Chen, L. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854–858. [Google Scholar] [CrossRef]
- Bayikadi, K.S.; Wu, C.T.; Chen, L.-C.; Chen, K.-H.; Chou, F.-C.; Sankar, R. Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries. J. Mater. Chem. A 2020, 8, 5332–5341. [Google Scholar] [CrossRef]
- Yu, R.; Fang, Z.; Dai, X.; Weng, H. Topological nodal line semimetals predicted from first-principles calculations. Front. Phys. 2017, 12, 127202. [Google Scholar] [CrossRef]
- Teshome, T.; Datta, A. Topological Phase Transition in Sb2Mg3 Assisted by Strain. ACS Omega 2019, 4, 8701–8706. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, Z.-M.; Liu, Y.; Guan, S.; Wang, S.-S.; Zhang, X.; Yao, Y.; Yang, S.A. Type-II nodal loops: Theory and material realization. Phys. Rev. B 2017, 96, 081106. [Google Scholar] [CrossRef]
- Chen, W.; Lu, H.-Z.; Zilberberg, O. Weak Localization and Antilocalization in Nodal-Line Semimetals: Dimensionality and Topological Effects. Phys. Rev. Lett. 2019, 122, 196603. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, J.; Wei, B.; Xu, S.; Song, Y.; Wang, X.; Xia, T.-L.; Chen, J.; Snyder, G.J.; Hong, J. Giant phonon anharmonicity driven by the asymmetric lone pairs in Mg3Bi2. Mater. Today Phys. 2022, 27, 100791. [Google Scholar] [CrossRef]
- Xin, J.; Li, G.; Auffermann, G.; Borrmann, H.; Schnelle, W.; Gooth, J.; Zhao, X.; Zhu, T.; Felser, C.; Fu, C. Growth and transport properties of Mg3X2 (X = Sb, Bi) single crystals. Mater. Today Phys. 2018, 7, 61–68. [Google Scholar] [CrossRef]
- Agne, M.T.; Imasato, K.; Anand, S.; Lee, K.; Bux, S.K.; Zevalkink, A.; Rettie, A.J.E.; Chung, D.Y.; Kanatzidis, M.G.; Snyder, G.J. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature. Mater. Today Phys. 2018, 6, 83–88. [Google Scholar] [CrossRef]
- Ding, J.; Lanigan-Atkins, T.; Calderón-Cueva, M.; Banerjee, A.; Abernathy, D.L.; Said, A.; Zevalkink, A.; Delaire, O. Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb,Bi)2 thermoelectrics. Sci. Adv. 2021, 7, eabg1449. [Google Scholar] [CrossRef]
- Peng, W.; Petretto, G.; Rignanese, G.-M.; Hautier, G.; Zevalkink, A. An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure. Joule 2018, 2, 1879–1893. [Google Scholar] [CrossRef]
- Peng, Q.; Zhao, S.; Yuan, X.; Chen, X.-J. Elasticity of Mg3Bi2-xSbx. Materials 2022, 15, 7161. [Google Scholar] [CrossRef]
- Peng, Q.; Ma, X.; Yang, X.; Zhao, S.; Yuan, X.; Chen, X. Assessing Effects of van der Waals Corrections on Elasticity of Mg3Bi2−xSbx in DFT Calculations. Materials 2023, 16, 6482. [Google Scholar] [CrossRef]
- Gooth, J.; Schierning, G.; Felser, C.; Nielsch, K. Quantum materials for thermoelectricity. MRS Bull. 2018, 43, 187–192. [Google Scholar] [CrossRef]
- Li, M.; Chen, G. Thermal transport for probing quantum materials. MRS Bull. 2020, 45, 348–356. [Google Scholar] [CrossRef]
- Barati, S.; Abedinpour, S.H. Thermoelectric response of nodal-line semimetals: Probing the Fermi surface topology. Phys. Rev. B 2020, 102, 125139. [Google Scholar] [CrossRef]
- Hosoi, M.; Tateishi, I.; Matsuura, H.; Ogata, M. Thin films of topological nodal line semimetals as a candidate for efficient thermoelectric converters. Phys. Rev. B 2022, 105, 085406. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, Y.; Peng, Q.; Yang, Y.; Li, Y.; Wen, X. Active learning to overcome exponential-wall problem for effective structure prediction of chemical-disordered materials. NPJ Comput. Mater. 2023, 9, 12. [Google Scholar] [CrossRef]
- Peng, Q.; Yuan, X.; Zhao, S.; Zhou, Y.; Wen, X.; Chen, X. Active-learning search for unitcell structures: A case study on Mg3Bi2−xSbx. Comput. Mater. Sci. 2023, 226, 112260. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, G.; Liu, G.-R.; De, S. Van der Waals Density Functional Theory vdW-DFq for Semihard Materials. Crystals 2019, 9, 243. [Google Scholar] [CrossRef]
- Allen, P.B. Boltzmann Theory and Resistivity of Metals. In Quantum Theory of Real Materials; Chelikowsky, J.R., Louie, S.G., Eds.; The Kluwer International Series in Engineering and Computer Science; Springer: Boston, MA, USA, 1996; pp. 219–250. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Xi, J.; Singh, D.J.; Sheng, Y.; Yang, J.; Zhang, W. TransOpt. A code to solve electrical transport properties of semiconductors in constant electron–phonon coupling approximation. Comput. Mater. Sci. 2021, 186, 110074. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.A.; Katcho, N.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Han, Z.; Yang, X.; Li, W.; Feng, T.; Ruan, X. FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 2022, 270, 108179. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Zhao, X.; Song, J.; Zhang, M.; Liu, H. MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources. Comput. Mater. Sci. 2018, 146, 319–333. [Google Scholar] [CrossRef]
- Li, W.; Mingo, N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B 2015, 91, 144304. [Google Scholar] [CrossRef]
Temperature (K) | Pressure (GPa) | Lattice Thermal Conductivity (W/m·K) |
---|---|---|
300 | −2.0 | 0.573 |
0.0 | 1.251 | |
1.0 | 0.988 | |
5.0 | 0.519 | |
500 | −2.0 | 0.258 |
0.0 | 0.765 | |
1.0 | 0.605 | |
5.0 | 0.322 | |
800 | −2.0 | 0.165 |
0.0 | 0.483 | |
1.0 | 0.383 | |
5.0 | 0.204 |
Main Carrier Type | Temperature (K) | Concentration (×1020 cm−3) | zT |
---|---|---|---|
Holes (p-type) | 300 | 0.85 | 0.17 |
500 | 0.89 | 0.43 | |
800 | 1.99 | 0.55 | |
Electrons (n-type) | 300 | 2.00 | 0.21 |
500 | 2.00 | 0.74 | |
800 | 1.99 | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Ma, X.; Yang, X.; Yuan, X.; Chen, X.-J. Thermoelectric Properties of Mg3(Bi,Sb)2 under Finite Temperatures and Pressures: A First-Principles Study. Nanomaterials 2024, 14, 84. https://doi.org/10.3390/nano14010084
Peng Q, Ma X, Yang X, Yuan X, Chen X-J. Thermoelectric Properties of Mg3(Bi,Sb)2 under Finite Temperatures and Pressures: A First-Principles Study. Nanomaterials. 2024; 14(1):84. https://doi.org/10.3390/nano14010084
Chicago/Turabian StylePeng, Qing, Xinjie Ma, Xiaoyu Yang, Xiaoze Yuan, and Xiao-Jia Chen. 2024. "Thermoelectric Properties of Mg3(Bi,Sb)2 under Finite Temperatures and Pressures: A First-Principles Study" Nanomaterials 14, no. 1: 84. https://doi.org/10.3390/nano14010084
APA StylePeng, Q., Ma, X., Yang, X., Yuan, X., & Chen, X. -J. (2024). Thermoelectric Properties of Mg3(Bi,Sb)2 under Finite Temperatures and Pressures: A First-Principles Study. Nanomaterials, 14(1), 84. https://doi.org/10.3390/nano14010084