Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of BaTiO3 Aerogel
2.3. Synthesis of Cr-Doped BaTiO3 Aerogel
2.4. Deposition of Noble Metal Ag Nanoparticles on Aerogel Surface
2.5. Photocatalytic Experiment
2.6. Characterization Methods
3. Results
3.1. Synthesizing Process of Materials
3.2. X-ray Diffraction
3.3. XPS Analysis
3.4. Morphology and Microstructure
3.5. Optical Characterization
3.6. Photocatalytic Activity
3.7. Photocatalytic Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, S.W.D.; Rice, J.S.; Nelson, K.D.; Vernon, C.R.; McManamay, R.; Dickson, K.; Marston, L. Comparison of potential drinking water source contamination across one hundred U.S. cities. Nat. Commun. 2021, 12, 7254. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Guo, L.; Sun, Y.; Huang, B.; Ding, Y.; Shao, G.; Huang, X.; Shen, X. Engineering aramid nanofibers into robust macroscopic aerogel spheres for water purification. Sep. Purif. Technol. 2024, 343, 127146. [Google Scholar] [CrossRef]
- Panhwar, A.; Sattar Jatoi, A.; Ali Mazari, S.; Kandhro, A.; Rashid, U.; Qaisar, S. Water resources contamination and health hazards by textile industry effluent and glance at treatment techniques: A review. Waste Manag. Bull. 2024, 1, 158–163. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef] [PubMed]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Wu, J.; Wang, W.; Tian, Y.; Song, C.; Qiu, H.; Xue, H. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants. Nano Energy 2020, 77, 105122. [Google Scholar] [CrossRef]
- Xu, S.; Guo, L.; Sun, Q.; Wang, Z.L. Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO3 Heterostructures. Adv. Funct. Mater. 2019, 29, 1808737. [Google Scholar] [CrossRef]
- Du, A.; Zhou, B.; Zhang, Z.; Shen, J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials 2013, 6, 941–968. [Google Scholar] [CrossRef]
- Wang, H.; He, X.; Zhou, B.; Shen, J.; Du, A. Hot electrons coupling-enhanced photocatalysis of super black carbon aerogels/titanium oxide composite. MRS Commun. 2018, 8, 521–526. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, G.; Xu, R.; Ding, C.; Hu, D.; Zhao, H.; Huang, X. Multicovalent crosslinked double-network graphene–polyorganosiloxane hybrid aerogels toward efficient thermal insulation and water purification. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129129. [Google Scholar] [CrossRef]
- Sakfali, J.; Ben Chaabene, S.; Akkari, R.; Zina, M.S. One-Pot Sol-Gel Synthesis of Doped TiO2 Nanostructures for Photocatalytic Dye Decoloration. Russ. J. Inorg. Chem. 2022, 67, 1324–1337. [Google Scholar] [CrossRef]
- Xu, H.; Jia, J.; Zhao, S.; Chen, P.; Xia, Q.; Wu, J.; Zhu, P. Hydrophobic TiO2-SiO2 Aerogel Composites for Fast Removal of Organic Pollutants. ChemistrySelect 2018, 3, 10483–10490. [Google Scholar] [CrossRef]
- Korala, L.; Germain, J.R.; Chen, E.; Pala, I.R.; Li, D.; Brock, S.L. CdS aerogels as efficient photocatalysts for degradation of organic dyes under visible light irradiation. Inorg. Chem. Front. 2017, 4, 1451–1457. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Phadtare, V.D.; Han, W.; Lee, K.-Y.; Jung, H.-N.-R.; Choi, H.; Kim, Y.; Yadav, H.M.; Park, H.-H. SnO2 aerogel deposited onto polymer-derived carbon foam for environmental remediation. J. Mol. Liq. 2019, 287, 110990. [Google Scholar] [CrossRef]
- Krumm, M.; Pueyo, C.L.; Polarz, S. Monolithic Zinc Oxide Aerogels from Organometallic Sol–Gel Precursors. Chem. Mater. 2010, 22, 5129–5136. [Google Scholar] [CrossRef]
- Yue, X.; Xiang, J.; Chen, J.; Li, H.; Qiu, Y.; Yu, X. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization. J. Mater. Sci. Technol. 2020, 47, 223–230. [Google Scholar] [CrossRef]
- Nawaz, M.; Miran, W.; Jang, J.; Lee, D.S. One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl. Catal. B Environ. 2017, 203, 85–95. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Fan, C.Y.; Tang, H.; Ma, T.D.; Shen, J.Y. One-step synthesis of recycled 3D CeVO4/rGO composite aerogels for efficient degradation of organic dyes. RSC Adv. 2016, 6, 85779–85786. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Dong, Y.; Li, H.; Xia, Y.; Wang, H. One-step synthesis of Bi2MoO6/reduced graphene oxide aerogel composite with enhanced adsorption and photocatalytic degradation performance for methylene blue. Mater. Sci. Semicond. Process. 2018, 88, 214–223. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Zou, L.; Wang, W.; Lian, Y.; Zhang, Z.; Du, A. Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels. Chem. Mater. 2013, 25, 4757–4764. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, B.; Zhang, Z.; Ji, X.; Yang, J.; Xie, Y.; Wang, H.; Du, A. Low-Temperature Synthesis of Monolithic Titanium Carbide/Carbon Composite Aerogel. Nanomaterials 2020, 10, 2527. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Shao, G.; Shen, X.; Cui, S.; Zhou, J.; Wei, Y.; Chen, X. Investigation on textural and structural evolution of the novel crack-free equimolar Al2O3-SiO2-TiO2 ternary aerogel during thermal treatment. Ceram. Int. 2017, 43, 4188–4196. [Google Scholar] [CrossRef]
- Cui, B.; Yu, P.; Wang, X. Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using hexanoic and hexanedioic acid as surfactant. Microelectron. Eng. 2009, 86, 352–356. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, H.; Deng, J.; Liu, Y.; Zhao, Z.; Li, X.; Arandiyan, H. Three-dimensionally ordered macroporous InVO4: Fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chem. Eng. J. 2013, 226, 87–94. [Google Scholar] [CrossRef]
- Chau, T.T.L.; Le, D.Q.T.; Le, H.T.; Nguyen, C.D.; Nguyen, L.V.; Nguyen, T.-D. Chitin Liquid-Crystal-Templated Oxide Semiconductor Aerogels. ACS Appl. Mater. Interfaces 2017, 9, 30812–30820. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Wu, X.; Suo, H.; Shen, X.; Cui, S. Synthesis of bulk BaTiO3 aerogel and characterization of photocatalytic properties. J. Sol-Gel Sci. Technol. 2019, 90, 313–322. [Google Scholar] [CrossRef]
- Ray, S.K.; Cho, J.; Hur, J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 2021, 290, 112679. [Google Scholar] [CrossRef]
- Demydov, D.; Klabunde, K.J. Characterization of mixed metal oxides (SrTiO3 and BaTiO3) synthesized by a modified aerogel procedure. J. Non-Cryst. Solids 2004, 350, 165–172. [Google Scholar] [CrossRef]
- Robles-Cortes, A.I.; Flores-Ramírez, D.; Armienta-Millán, C.; Romero-Ibarra, I.C.; Ortiz-Landeros, J. A facile synthesis of bismuth-modified barium titanate as photocatalyst for degradation of rhodamine B. MRS Adv. 2023, 8, 1330–1335. [Google Scholar] [CrossRef]
- Oku, M.; Wagatsuma, K.; Kohiki, S. Ti 2p and Ti 3p X-ray photoelectron spectra for TiO2, SrTiO3 and BaTiO3. Phys. Chem. Chem. Phys. 1999, 1, 5327–5331. [Google Scholar] [CrossRef]
- Zenkevich, A.; Minnekaev, M.; Matveyev, Y.; Lebedinskii, Y.; Bulakh, K.; Chouprik, A.; Baturin, A.; Maksimova, K.; Thiess, S.; Drube, W. Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions. Appl. Phys. Lett. 2013, 102, 062907. [Google Scholar] [CrossRef]
- Ramli, N.N.; Kurniawan, S.B.; Ighalo, J.O.; Mohd Said, N.S.; Marsidi, N.; Buhari, J.; Ramli Shah, R.A.; Zulkifli, M.; Alias, J.; Daud, N.M.; et al. A review of the treatment technologies for hexavalent chromium contaminated water. BioMetals 2023, 36, 1189–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Y.; Li, Z. Ag loaded flower-like BaTiO3 nanotube arrays: Fabrication and enhanced photocatalytic property. CrystEngComm 2012, 14, 1473–1478. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, X.; Xu, Y.; Alves, T.V.; Li, M.; Wang, C.; Camargo, P.H.C.; Wang, J. Surface Plasmon Resonance (SPR)—Triggered Polarization of BaTiO3 Surface on Ag Nanocubes Improves Photocatalysis. ChemPhotoChem 2024, 8, e202300200. [Google Scholar] [CrossRef]
- Ali, M.; Swami, P.; Kumar, A.; Guin, D.; Tripathi, C.S.P. Enhanced photocatalytic degradation of Rhodamine B using gold nanoparticles decorated on BaTiO3 with surface plasmon resonance enhancement. Anal. Sci. 2024, 40, 643–654. [Google Scholar] [CrossRef]
- Devi, L.G.; Nithya, P.M. Preparation, characterization and photocatalytic activity of BaTiF6 and BaTiO3: A comparative study. J. Environ. Chem. Eng. 2018, 6, 3565–3573. [Google Scholar] [CrossRef]
- Amaechi, I.C.; Hadj Youssef, A.; Rawach, D.; Claverie, J.P.; Sun, S.; Ruediger, A. Ferroelectric Fe–Cr Codoped BaTiO3 Nanoparticles for the Photocatalytic Oxidation of Azo Dyes. ACS Appl. Nano Mater. 2019, 2, 2890–2901. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, X.; Li, H.; Guan, Y.; Chen, J.; Chen, Y.; Hu, Z.; Gao, W. Construction of the Z-scheme Cu2O-Ag/AgBr heterostructures to enhance the visible-light-driven photocatalytic water disinfection and antibacterial performance. J. Alloys Compd. 2024, 980, 173665. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, R.; Ren, Z.; Chen, X.; Tian, H.; Wie, X.; Li, X.; Shen, G.; Han, G. A Reduced Graphene Oxide (rGO)-Ferroelectrics Hybrid Nanocomposite as High Efficient Visible-Light-Driven Photocatalyst. ChemistrySelect 2016, 1, 6020–6025. [Google Scholar] [CrossRef]
- Xian, T.; Yang, H.; Di, L.J.; Dai, J.F. Enhanced photocatalytic activity of BaTiO3@ g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation. J. Alloy Compd. 2015, 622, 1098–1104. [Google Scholar] [CrossRef]
- Wei, K.; Wang, B.; Hu, J.; Chen, F.; Hao, Q.; He, G.; Wang, Y.; Li, W.; Liu, J.; He, Q. Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core–shell structure. Rsc. Adv. 2019, 9, 11377–11384. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.; Haugen, H.K.; Hotop, H. Binding energies in atomic negative ions: III. J. Phys. Chem. Ref. Data 1999, 28, 1511–1533. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X.; Zhu, K.; Liang, P.; Wu, M.; Rao, Y.; Jian, R.; Shi, F.; Wang, J.; Yan, K.; et al. Semiconducting BaTiO3@C core-shell structure for improving piezo-photocatalytic performance. Nano Energy 2022, 93, 106831. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Yu, J.C. Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst. Chem. Mater. 2008, 20, 3983–3992. [Google Scholar] [CrossRef]
Photocatalyst | Morphology | Photocatalytic Performance | Photodegradation Kinetics | Ref |
---|---|---|---|---|
5% Ag/BTO-Cr010 (100 mg) | Aerogels | 92% for MO, 60 min (10 mg/L, 100 mL) | 0.0448 min−1 | This work |
BaTiF6 (—) | Fibrous network | 98% for MO, 150 min (Not mentioned) | 0.0169 min−1 | [38] |
Fe–Cr codoped BaTiO3 (50 mg) | Irregular NPs | 94% for MO, 90 min (20 mg/L, 50 mL) | 0.0303 min−1 | [39] |
Cu2O-Ag/AgBr (70 mg) | Octahedral NPs | ~100% for MO, 90 min (10 mg/L, 70 mL) | 0.0358 min−1 | [40] |
BaTiO3/rGO (50 mg) | Nanosheet and NPs | 70% for MO, 20 min (0.05 mM, 50 mL) | 0.0556 min−1 | [41] |
BaTiO3@g-C3N4 (0.5 g/L) | Irregular NPs | 76% for MO, 360 min (5 mg/L) | Not mentioned | [42] |
BaTiO3/In2S3 (0.5 g/L) | core–shell | 93% for MO, 90 min (10 mg/L, 100 mL) | 0.0334 min−1 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Shao, G.; Wu, X.; Cui, S.; Shen, X. Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange. Nanomaterials 2024, 14, 848. https://doi.org/10.3390/nano14100848
Wu J, Shao G, Wu X, Cui S, Shen X. Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange. Nanomaterials. 2024; 14(10):848. https://doi.org/10.3390/nano14100848
Chicago/Turabian StyleWu, Jun, Gaofeng Shao, Xiaodong Wu, Sheng Cui, and Xiaodong Shen. 2024. "Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange" Nanomaterials 14, no. 10: 848. https://doi.org/10.3390/nano14100848
APA StyleWu, J., Shao, G., Wu, X., Cui, S., & Shen, X. (2024). Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange. Nanomaterials, 14(10), 848. https://doi.org/10.3390/nano14100848