Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagent
2.2. Preparation of TiO2-Doped SiO2 Aerogel
2.3. Thermal Treatment of TiO2-Doped SiO2 Aerogel
2.4. Characterizations
3. Results and Discussion
3.1. Morphology Change in Samples under Different Temperature Treatment
3.2. Effect of Particle Addition on Temperature Resistance of TiO2-Doped SiO2 Aerogels
3.3. Properties of Particles on the Thermal Stability of TiO2-Doped SiO2 Aerogels
3.4. X-ray Diffraction Analysis of TiO2-Doped SiO2 Aerogels
3.5. Microscopic Morphology Analysis of TiO2-Doped SiO2 Aerogels
3.6. Elemental Distributions Analysis of TiO2-Doped SiO2 Aerogels
3.7. BET Analysis of TiO2-Doped SiO2 Aerogels
3.8. TG-DSC Analysis of SiO2- and TiO2-Doped SiO2 Aerogels
4. Conclusions
- As one of the most commonly used infrared shading agents in silicon oxide aerogels, commercial titanium dioxide particles can provide stress points for the aerogel skeleton and significantly improve the mechanical properties. Consequently, the silica aerogels showed no crack under high-temperature treatment.
- The size and addition of titanium dioxide particles had a minimal effect on the temperature resistance of the aerogel. However, the crystal phase of the particles had a significant impact on the temperature resistance of the aerogel. The thermal conductivity and density variation results showed that the anatase titanium dioxide particles performed better than the rutile ones. We attribute this discrepancy to the different modes in which silicon oxide grows on the particle surface. Initially, the silicon oxide grows upright on the surface of rutile particles and adheres to the surface of anatase particles. However, under high-temperature conditions, the rutile draws molten silicon oxide into the particle clusters, leading to structural collapse, while the anatase expels the silicon oxide. This phenomenon is further confirmed by the XRD, EDS, TEM, and TG-DSC results.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, B.; Huang, J.; Wang, Q.; Huang, H.; Chen, Q. Fabrication of ultra-fine flexible Y2Si2O7 fibrous membranes for thermal insulation by electrospinning. Ceram. Int. 2023, 49, 35722–35729. [Google Scholar] [CrossRef]
- Yan, M.; Hu, C.; Li, J.; Zhao, R.; Pang, S.; Liang, B.; Tang, S.; Liu, G.; Cheng, H.M. An unusual carbon–ceramic composite with gradients in composition and porosity delivering outstanding thermal protection performance up to 1900 °C. Adv. Funct. Mater. 2022, 32, 2204133. [Google Scholar] [CrossRef]
- Li, X.; Wu, R.; Xu, X.; Zhang, D.; Yu, M. Study of a high temperature–resistant shielding material for the shielding doors of nuclear power plants. Front. Energy Res. 2021, 9, 751654. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Wang, Q.; Tian, H. Research on thermal out of control of lithium battery in new energy vehicles. IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 022038. [Google Scholar] [CrossRef]
- Danaci, H.M.; Akin, N. Thermal insulation materials in architecture: A comparative test study with aerogel and rock wool. Environ. Sci. Pollut. Res. 2022, 29, 72979–72990. [Google Scholar] [CrossRef] [PubMed]
- Kunjalukkal Padmanabhan, S.; Ul Haq, E.; Licciulli, A. Synthesis of silica cryogel-glass fiber blanket by vacuum drying. Ceram. Int. 2016, 42, 7216–7222. [Google Scholar] [CrossRef]
- Altuntop, E.S.; Erdemir, D.; Karamis, M.B. Experimental investigation of heat conduction characteristics of density-layered stone wool materials. Int. Commun. Heat Mass Transfer. 2021, 126, 105334. [Google Scholar] [CrossRef]
- Teichner, S.J.; Nicolaon, G.A.; Vicarini, M.A.; Gardes, G.E.E. Inorganic oxide aerogels. Adv. Colloid Interface Sci. 1976, 5, 245–273. [Google Scholar] [CrossRef]
- Tewari, P.H.; Hunt, A.J.; Lofftus, K.D. Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 1985, 3, 363–367. [Google Scholar] [CrossRef]
- Zhao, X.; Ruan, K.; Qiu, H.; Zhong, X.; Gu, J. Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation. Adv. Compos. Hybrid Mater. 2023, 6, 171. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Y.; Xu, X.; Li, M.; Han, Y.; Huang, S. Sound absorption polyimide composite aerogels for ancient architectures’ protection. Adv. Compos. Hybrid Mater. 2023, 6, 137. [Google Scholar] [CrossRef]
- Dong, S.; Maciejewska, B.; Millar, R.; Grobert, N. 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation. Adv. Compos. Hybrid Mater. 2023, 6, 186. [Google Scholar] [CrossRef]
- Sun, W.; Du, A.; Feng, Y.; Shen, J.; Huang, S.; Tang, J.; Zhou, B. Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 2016, 10, 9123–9128. [Google Scholar] [CrossRef]
- Hüsing, N.; Schubert, U. Aerogels—Airy materials: Chemistry, structure, and properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Fricke, J.; Lu, X.; Wang, P.; Büttner, D.; Heinemann, U. Optimization of monolithic silica aerogel insulants. Int. Commun. Heat Mass Transfer. 1992, 35, 2305–2309. [Google Scholar] [CrossRef]
- Lin, J.; Qiao, J.; Tian, H.; Li, L.; Liu, W.; Wu, L.; Liu, J.; Zeng, Z. Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 177. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006, 300, 279–285. [Google Scholar] [CrossRef]
- Yun, S.; Luo, H.; Gao, Y. Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J. Mater. Chem. A 2015, 3, 3390–3398. [Google Scholar] [CrossRef]
- Ueoka, R.; Hara, Y.; Maeno, A.; Kaji, H.; Nakanishi, K.; Kanamori, K. Unusual flexibility of transparent poly(methylsilsesquioxane) aerogels by surfactant-induced mesoscopic fiber-like assembly. Nat. Commun. 2024, 15, 461. [Google Scholar] [CrossRef]
- Guo, J.; Tang, G.; Jiang, Y.; Cai, H.; Feng, J.; Feng, J. Inhibited radiation transmittance and enhanced thermal stability of silica aerogels under very-high temperature. Ceram. Int. 2021, 47, 19824–19834. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Yu, C.; Liu, L.; Zhang, Z.; Wu, Y.; Shen, J. Organic/inorganic double-precursor cross-linked alumina aerogel with high specific surface area and high-temperature resistance. Ceram. Int. 2022, 48, 17261–17269. [Google Scholar] [CrossRef]
- Walker, R.C.; Potochniak, A.E.; Hyer, A.P.; Ferri, J.K. Zirconia aerogels for thermal management: Review of synthesis, processing, and properties information architecture. Adv. Colloid Interface Sci. 2021, 295, 102464. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.N.R.; Parale, V.G.; Kim, T.; Cho, H.H.; Park, H.H. Zirconia-based alumina compound aerogels with enhanced mesopore structure. Ceram. Int. 2018, 44, 10579–10584. [Google Scholar] [CrossRef]
- Guo, J.; Tang, G. A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels. Int. Commun. Heat Mass Transfer. 2019, 137, 64–73. [Google Scholar] [CrossRef]
- Huang, D.; Guo, C.; Zhang, M.; Shi, L. Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, L.; Wang, F.; Shen, X.; Cui, S.; Zhang, J.; Wang, X. Mechanically reinforced composite aerogel blocks by self-growing nanofibers. RSC Adv. 2014, 4, 48601–48605. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Ghica, M.E.; Durães, L. An overview on alumina-silica-based aerogels. Adv. Colloid Interface Sci. 2020, 282, 102189. [Google Scholar] [CrossRef]
- Yu, Y.; Li, L.; Huang, Y.; Huang, L.; Zhang, S. Preparation and properties of low-density and high-temperature resistant yttrium doped silica aerogels. J. Non-Cryst. Solids 2022, 590, 121572. [Google Scholar] [CrossRef]
- Wang, L.; Lian, W.; Yin, B.; Liu, X.; Tang, S. Silica nanowires-reinforced silica aerogels with outstanding thermal insulation, thermal stability and mechanical properties. Ceram. Int. 2023, 50, 6693–6702. [Google Scholar] [CrossRef]
- Yuan, B.; Ding, S.; Wang, D.; Wang, G.; Li, H. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater. Lett. 2012, 75, 204–206. [Google Scholar] [CrossRef]
- Ji, Q.; Chen, Z.; Xing, S.; Jiao, X.; Chen, D. Mullite nanosheet/titania nanorod/silica composite aerogels for high-temperature thermal insulation. ACS Appl. Nano Mater. 2023, 6, 17218–17228. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, X.; Liu, X.; Chen, C.; Han, X. Development of SiC fiber through heat treatment of silica aerogel by in-situ curing. Mater. Lett. 2021, 283, 128797. [Google Scholar] [CrossRef]
- Parale, V.G.; Jung, H.N.R.; Han, W.; Lee, K.Y.; Mahadik, D.B.; Cho, H.H.; Park, H.H. Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels. J. Alloys Compd. 2017, 727, 871–878. [Google Scholar] [CrossRef]
- Liu, J.; Buahom, P.; Lu, C.; Yu, H.; Park, C.B. Microscopic revelation of the solid–gas coupling and Knudsen effect on the thermal conductivity of silica aerogel with inter-connected pores. Sci. Rep. 2022, 12, 21034. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Arduini-Schuster, M.C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R.W. Thermal conductivity of monolithic organic aerogels. Science 1992, 255, 971–972. [Google Scholar] [CrossRef] [PubMed]
- Tsallis, C.; Sá Barreto, F.C.; Loh, E.D. Generalization of the Planck radiation law and application to the cosmic microwave background radiation. Phys. Rev. E 1995, 52, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Stevens, P.C.; Zeng, S.Q.; Hunt, A.J. Thermal characterization of carbon-opacified silica aerogels. J. Non-Cryst. Solids 1995, 186, 285–290. [Google Scholar] [CrossRef]
- Jiang, D.; Qin, J.; Zhou, X.; Li, Q.; Yi, D.; Wang, B. Improvement of thermal insulation and compressive performance of Al2O3–SiO2 aerogel by doping carbon nanotubes. Ceram. Int. 2022, 48, 16290–16299. [Google Scholar] [CrossRef]
- Kwon, Y.G.; Choi, S.Y.; Kang, E.S.; Baek, S.S. Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation. J. Mater. Sci. 2000, 35, 6075–6079. [Google Scholar] [CrossRef]
- Wang, X.; Sun, D.; Duan, Y.; Hu, Z. Radiative characteristics of opacifier-loaded silica aerogel composites. J. Non-Cryst. Solids 2013, 375, 31–39. [Google Scholar] [CrossRef]
- Sarvalkar, P.D.; Vadanagekar, A.S.; Karvekar, O.S.; Kumbhar, P.D.; Terdale, S.S.; Thounaojam, A.S.; Kolekar, S.S.; Vhatkar, R.S.; Patil, P.S.; Sharma, K.K.K. Thermodynamics of azo dye adsorption on a newly synthesized titania-doped silica aerogel by cogelation: A comparative investigation with silica aerogels and activated charcoal. ACS Omega 2023, 8, 13285–13299. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, P.; Malfatti, L. Mesoporous ordered titania films: An advanced platform for photocatalysis. J. Photochem. Photobiol. C 2024, 58, 100646. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Nagpal, V.J.; Davis, R.M.; Riffle, J.S. In situ steric stabilization of titanium dioxide particles synthesized by a sol—Gel process. Colloids Surf. A 1994, 87, 25–31. [Google Scholar] [CrossRef]
- Look, J.L.; Zukoski, C.F. Alkoxide-derived titania particles: Use of electrolytes to control size and agglomeration levels. J. Am. Ceram. Soc. 1992, 75, 1587–1595. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, Q.; Tang, S. Effects on the size of nano-TiO2 powders prepared with sol-emulsion-gel method. Powder Technol. 2006, 168, 32. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J. Preparation and investiagation of highly effective thermal insulations: Silica aerogels doped with TiO2 powder and ceramic fiber. Chin. J. Mater. Res. 1995, 9, 568–572. [Google Scholar]
- Zhang, Y.H.; Reller, A. Phase transformation and grain growth of doped nanosized titania. Mater. Sci. Eng. C 2002, 19, 323–326. [Google Scholar] [CrossRef]
- Kim, J.; Song, K.C.; Foncillas, S.; Pratsinis, S.E. Dopants for synthesis of stable bimodally porous titania. J. Eur. Ceram. Soc. 2001, 21, 2863–2872. [Google Scholar] [CrossRef]
- Yang, J.; Ferreira, J.M.F. Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation. Mater. Lett. 1998, 36, 320–324. [Google Scholar] [CrossRef]
- Okada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A.; Mackenzie, K.J.D. Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 2001, 84, 1591–1596. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Chen, L.; Zhai, J.; Song, Y.; Jiang, L. High-temperature wetting transition on micro- and nanostructured surfaces. Angew. Chem. Int. Ed. 2011, 50, 5311–5314. [Google Scholar] [CrossRef] [PubMed]
- Ehgartner, C.R.; Grandl, S.; Feinle, A.; Hüsing, N. Flexible organofunctional aerogels. Dalton Trans. 2017, 46, 8809–8817. [Google Scholar] [CrossRef]
Sample | TEOS (mL) | EtOH (mL) | H2O (mL) | HF (mL) | Fumed Silica (g) | TiO2 (g) | Particle Properties |
---|---|---|---|---|---|---|---|
P-SiO2 | 15 | 30 | 3.75 | 0.6 | 0 | 0 | None |
PF-SiO2 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0 | None |
R-<100 nm 0.6 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.6 | <100 nm Rutile |
R-60 nm 0.6 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.6 | 60 nm Rutile |
R-100 nm 0.6 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.6 | 100 nm Rutile |
A-5–10 nm 0.6 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.6 | 5–10 nm Anatase |
A-100 nm 0.6 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.6 | 100 nm Anatase |
A-<100 nm 0.4 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.4 | <100 nm Anatase |
A-<100 nm 0.6 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.6 | <100 nm Anatase |
A-<100 nm 0.8 | 15 | 30 | 3.75 | 0.6 | 0.1 | 0.8 | <100 nm Anatase |
A-<100 nm 1.0 | 15 | 30 | 3.75 | 0.6 | 0.1 | 1.0 | <100 nm Anatase |
600 °C | 800 °C | 1000 °C | ||
---|---|---|---|---|
P-SiO2 | linear shrinkage | 1.20% | None * | None |
volume shrinkage | 5.21% | None | None | |
PF-SiO2 | linear shrinkage | 2.10% | 5.12% | None |
volume shrinkage | 6.18% | 14.54% | None | |
A-<100 nm 0.6 | linear shrinkage | 1.30% | 2.84% | 26.92% |
volume shrinkage | 0.28% | 3.81% | 61.57% | |
R-<100 nm 0.6 | linear shrinkage | 5.80% | 19.64% | 62.50% |
volume shrinkage | 17.06% | 49.03% | 94.76% |
Sample | Surface Area of Pores (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
R-<100 nm 0.6–25 °C | 342.2193 | 0.612398 | 12.9404 |
R-<100 nm 0.6–800 °C | 207.6177 | 1.086012 | 29.7422 |
A-<100 nm 0.6–25 °C | 273.6364 | 0.532913 | 14.4016 |
A-<100 nm 0.6–800 °C | 354.3172 | 0.752726 | 14.9889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Lu, J.; Duan, C.; Wu, C.; Lin, J.; Qiu, R.; Zhang, Z.; Yang, J.; Zhou, B.; Du, A. Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels. Nanomaterials 2024, 14, 1304. https://doi.org/10.3390/nano14151304
Fan C, Lu J, Duan C, Wu C, Lin J, Qiu R, Zhang Z, Yang J, Zhou B, Du A. Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels. Nanomaterials. 2024; 14(15):1304. https://doi.org/10.3390/nano14151304
Chicago/Turabian StyleFan, Caide, Jialu Lu, Chengjie Duan, Chengbin Wu, Jiming Lin, Ruoxiang Qiu, Zehui Zhang, Jianming Yang, Bin Zhou, and Ai Du. 2024. "Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels" Nanomaterials 14, no. 15: 1304. https://doi.org/10.3390/nano14151304
APA StyleFan, C., Lu, J., Duan, C., Wu, C., Lin, J., Qiu, R., Zhang, Z., Yang, J., Zhou, B., & Du, A. (2024). Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels. Nanomaterials, 14(15), 1304. https://doi.org/10.3390/nano14151304