Metal–Support Interaction in Pt Nanodisk–Carbon Nitride Catalyst: Insight from Theory and Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Apparatus
2.2. Synthesis of g-CN and Pt@g-CN
2.3. Electrocatalytic ORR
2.4. Computational Settings
3. Results and Discussion
3.1. Synthesis and Characterisation of Pt@g-CN
3.2. Theoretical Insight into Pt’s Performance from d-Band Theory
3.3. Electrocatalytic Activity Investigations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ando, S.; Yamamoto, E.; Kobayashi, M.; Kumatani, A.; Osada, M. Facile Synthesis of Pd Nanosheets and Implications for Superior Catalytic Activity. ACS Nano 2024, 18, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, D.; Toma, S.; Suda, Y.; Shirokura, T.; Tokura, Y.; Fukuda, K.; Matsumoto, M.; Imai, H.; Sugimoto, W. Platinum nanosheets synthesized via topotactic reduction of single-layer platinum oxide nanosheets for electrocatalysis. Nat. Commun. 2023, 14, 19. [Google Scholar] [CrossRef]
- Ide, Y.; Matsuoka, M.; Ogawa, M. Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate. J. Am. Chem. Soc. 2010, 132, 16762–16764. [Google Scholar] [CrossRef]
- Doustkhah, E.; Rostamnia, S.; Tsunoji, N.; Henzie, J.; Takei, T.; Yamauchi, Y.; Ide, Y. Templated synthesis of atomically-thin Ag nanocrystal catalysts in the interstitial space of a layered silicate. Chem. Commun. 2018, 54, 4402–4405. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Ding, Y. 2D ultrathin core–shell Pd@Ptmonolayer nanosheets: Defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale 2015, 7, 11934–11939. [Google Scholar] [CrossRef]
- Farmer, J.A.; Campbell, C.T. Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding. Science 2010, 329, 933–936. [Google Scholar] [CrossRef]
- Hu, S.; Li, W.-X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360–1365. [Google Scholar] [CrossRef]
- Doustkhah, E.; Tsunoji, N.; Assadi, M.H.N.; Ide, Y. Pd Thickness Optimization on Silicate Sheets for Improving Catalytic Activity. Adv. Mater. Interfaces 2023, 10, 2202368. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, J.; Zhang, Y.; Pan, C.; Dong, Y.; Zhu, Y. Metal-support interaction for heterogeneous catalysis: From nanoparticles to single atoms. Mater. Today Nano 2020, 12, 100093. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, J.; Jeon, M.; Ridwan, M.; Park, H.S.; Choi, S.H.; Nam, S.W.; Han, J.; Lim, T.-H.; Ham, H.C.; et al. Experimental and computational studies of formic acid dehydrogenation over PdAu: Influence of ensemble and ligand effects on catalysis. J. Mater. Chem. A 2016, 4, 14141–14147. [Google Scholar] [CrossRef]
- Bai, J.; Ke, S.; Song, J.; Wang, K.; Sun, C.; Zhang, J.; Dou, M. Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes. ACS Appl. Mater. Interfaces 2022, 14, 5287–5297. [Google Scholar] [CrossRef]
- Ando, F.; Gunji, T.; Tanabe, T.; Fukano, I.; Abruña, H.D.; Wu, J.; Ohsaka, T.; Matsumoto, F. Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its d-Band Center via Transition Metal Oxide Support Interactions. ACS Catal. 2021, 11, 9317–9332. [Google Scholar] [CrossRef]
- Aso, R.; Hojo, H.; Takahashi, Y.; Akashi, T.; Midoh, Y.; Ichihashi, F.; Nakajima, H.; Tamaoka, T.; Yubuta, K.; Nakanishi, H.; et al. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide. Science 2022, 378, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Mohajer, S.; Sharif, M.A.; Aghdam, A.H.; Borjkhani, M.; Assadi, M.H.N. Amplified hybrid surface plasmon polaritons in partially reduced graphene oxide supported on gold. Appl. Surf. Sci. 2023, 639, 158120. [Google Scholar] [CrossRef]
- Labinger, J.A. Platinum-Catalyzed C–H Functionalization. Chem. Rev. 2017, 117, 8483–8496. [Google Scholar] [CrossRef] [PubMed]
- Lykhach, Y.; Kozlov, S.M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J.; et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Doustkhah, E.; Tsunoji, N.; Mine, S.; Toyao, T.; Shimizu, K.; Morooka, T.; Masuda, T.; Assadi, M.H.N.; Ide, Y. Feeble Single-Atom Pd Catalysts for H2 Production from Formic Acid. ACS Appl. Mater. Interfaces 2024, 16, 10251–10259. [Google Scholar] [CrossRef] [PubMed]
- Doustkhah, E.; Kotb, A.; Tafazoli, S.; Balkan, T.; Kaya, S.; Hanaor, D.A.H.; Assadi, M.H.N. Templated Synthesis of Exfoliated Porous Carbon with Dominant Graphitic Nitrogen. ACS Mater. Au 2023, 3, 231–241. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, J.; Wang, Z.; Wei, Z.; Liu, J.; Gong, X. Transfer of molecular oxygen and electrons improved by the regulation of C-N/C = O for highly efficient 2e-ORR. Chem. Eng. J. 2022, 433, 133591. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Andersen, M. Revelations of the d band. Nat. Catal. 2023, 6, 460–461. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Liu, S.; Zha, S.; Cheng, D.; Studt, F.; Henkelman, G.; Gong, J. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804. [Google Scholar] [CrossRef]
- Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2016, 8, 692–697. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Fronzi, M.; Ford, M.; Shigeta, Y. High-performance Na ion cathodes based on the ubiquitous and reversible O redox reaction. J. Mater. Chem. A 2018, 6, 24120–24127. [Google Scholar] [CrossRef]
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Pastor, E.; Sachs, M.; Selim, S.; Durrant, J.R.; Bakulin, A.A.; Walsh, A. Electronic defects in metal oxide photocatalysts. Nat. Rev. Mater. 2022, 7, 503–521. [Google Scholar] [CrossRef]
- Savin, A.; Silvi, B.; Colonna, F. Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem. 1996, 74, 1088–1096. [Google Scholar] [CrossRef]
- Koumpouras, K.; Larsson, J. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. Condens. Matter 2020, 32, 315502. [Google Scholar] [CrossRef] [PubMed]
- Yano, H.; Higuchi, E.; Uchida, H.; Watanabe, M. Temperature Dependence of Oxygen Reduction Activity at Nafion-Coated Bulk Pt and Pt/Carbon Black Catalysts. J. Phys. Chem. B 2006, 110, 16544–16549. [Google Scholar] [CrossRef]
- Kariuki, N.N.; Myers, D.J. Impact of Nickel Ions on the Oxygen Reduction Reaction Kinetics of Pt and on Oxygen Diffusion through Ionomer Thin Films. J. Electrochem. Soc. 2021, 168, 064505. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Q.; Jiao, S.; Xu, C.; Wang, L. Single Pt Nanowire Electrode: Preparation, Electrochemistry, and Electrocatalysis. Anal. Chem. 2013, 85, 4135–4140. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Zhang, H.; Song, Y.; Liu, P.; Hou, Y.; Xu, B.; Liao, T.; Guo, J.; Sun, Z. Electronic Asymmetry Engineering of Fe–N–C Electrocatalyst via Adjacent Carbon Vacancy for Boosting Oxygen Reduction Reaction. Adv. Sci. 2023, 10, 2305194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Zhang, L.; Wu, Y.; Chen, H.; Li, T.; Xu, M.; Bao, S.-J. A gel-limiting strategy for large-scale fabrication of Fe–N–C single-atom ORR catalysts. J. Mater. Chem. A 2021, 9, 7137–7142. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Z.; Lei, Z.; Tan, Y.; Wu, W.; Mu, S.; Cheng, N. Defect-enriched hollow porous Co–N-doped carbon for oxygen reduction reaction and Zn-Air batteries. Carbon 2020, 167, 188–195. [Google Scholar] [CrossRef]
- Sarkar, S.; Biswas, A.; Purkait, T.; Das, M.; Kamboj, N.; Dey, R.S. Unravelling the Role of Fe–Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction Reaction and Rechargeable Zn-Air Batteries. Inorg. Chem. 2020, 59, 5194–5205. [Google Scholar] [CrossRef]
- Balkan, T.; Küçükkeçeci, H.; Zarenezhad, H.; Kaya, S.; Metin, Ö. One-pot synthesis of monodisperse copper–silver alloy nanoparticles and their composition-dependent electrocatalytic activity for oxygen reduction reaction. J. Alloys Compd. 2020, 831, 154787. [Google Scholar] [CrossRef]
- Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar] [CrossRef] [PubMed]
Layer | Entire Valence Band | −3.5 ≤ EFermi ≤ 0 | −3.0 ≤ EFermi ≤ 0 |
---|---|---|---|
8 (Outermost) | 8.927 | 5.847 | 5.037 |
7 | 8.961 | 5.124 | 4.396 |
6 | 8.992 | 5.227 | 4.455 |
5 | 8.988 | 5.235 | 4.527 |
4 | 9.343 | 5.170 | 4.528 |
3 | 9.548 | 5.202 | 4.533 |
2 | 9.605 | 5.218 | 4.543 |
1 (Pt@g-CN Interface) | 9.580 | 5.387 | 4.665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doustkhah, E.; Kotb, A.; Balkan, T.; Assadi, M.H.N. Metal–Support Interaction in Pt Nanodisk–Carbon Nitride Catalyst: Insight from Theory and Experiment. Nanomaterials 2024, 14, 921. https://doi.org/10.3390/nano14110921
Doustkhah E, Kotb A, Balkan T, Assadi MHN. Metal–Support Interaction in Pt Nanodisk–Carbon Nitride Catalyst: Insight from Theory and Experiment. Nanomaterials. 2024; 14(11):921. https://doi.org/10.3390/nano14110921
Chicago/Turabian StyleDoustkhah, Esmail, Ahmed Kotb, Timuçin Balkan, and Mohammad Hussein Naseef Assadi. 2024. "Metal–Support Interaction in Pt Nanodisk–Carbon Nitride Catalyst: Insight from Theory and Experiment" Nanomaterials 14, no. 11: 921. https://doi.org/10.3390/nano14110921
APA StyleDoustkhah, E., Kotb, A., Balkan, T., & Assadi, M. H. N. (2024). Metal–Support Interaction in Pt Nanodisk–Carbon Nitride Catalyst: Insight from Theory and Experiment. Nanomaterials, 14(11), 921. https://doi.org/10.3390/nano14110921