Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Perovskite Film Fabrication
2.3. Exposure of Buried Bottom Interface
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C.J. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. Phys. Chem. Lett. 2014, 5, 1035. [Google Scholar] [CrossRef] [PubMed]
- Unger, E.L.; Kegelmann, L.; Suchan, K.; Sörell, D.; Korte, L.; Albrecht, S.J. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. Mater. Chem. A 2017, 5, 11401. [Google Scholar] [CrossRef]
- Rehman, W.; McMeekin, D.P.; Patel, J.B.; Milot, R.L.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 2017, 10, 361. [Google Scholar] [CrossRef]
- Bi, C.; Yuan, Y.; Fang, Y.; Huang, J. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1401616. [Google Scholar] [CrossRef]
- Bischak, C.G.; Sanehira, E.M.; Precht, J.T.; Luther, J.M.; Ginsberg, N.S. Heterogeneous charge carrier dynamics in organic-inorganic hybrid materials: Nanoscale lateral and depth-dependent variation of recombination rates in methylammonium lead halide perovskite thin films. Nano Lett. 2015, 15, 4799. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341. [Google Scholar] [CrossRef]
- Yang, W.; Ding, B.; Lin, Z.; Sun, J.; Meng, Y.; Ding, Y.; Sheng, J.; Yang, Z.; Ye, J.; Dyson, P.J.; et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 2023, 35, 2302071. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic ch3nh3pbi3. Science 2013, 342, 344. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476. [Google Scholar] [CrossRef]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Márquez, J.A.; Morales Vilches, A.B.; Kasparavicius, E.; Smith, J.A.; et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 2020, 370, 1300. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Che, F.; Wei, M.; Zhao, Y.; Saidaminov, M.I.; Todorović, P.; Broberg, D.; Walters, G.; Tan, F.; Zhuang, T.; et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 2018, 9, 3100. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jung, H.J.; Park, I.J.; Larson, B.W.; Dunfield, S.P.; Xiao, C.; Kim, J.; Tong, J.; Boonmongkolras, P.; Ji, S.G.; et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 2020, 368, 155. [Google Scholar] [CrossRef] [PubMed]
- Gelmetti, I.; Montcada, N.F.; Pérez-Rodríguez, A.; Barrena, E.; Ocal, C.; García-Benito, I.; Molina-Ontoria, A.; Martín, N.; Vidal-Ferran, A.; Palomares, E. Energy alignment and recombination in perovskite solar cells: Weighted influence on the open circuit voltage. Energy Environ. Sci. 2019, 12, 1309. [Google Scholar] [CrossRef]
- Shao, Y.; Fang, Y.; Li, T.; Wang, Q.; Dong, Q.; Deng, Y.; Yuan, Y.; Wei, H.; Wang, M.; Gruverman, A.; et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752. [Google Scholar] [CrossRef]
- Azpiroz, J.M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, C.; Luo, H.; Kong, W.; Luo, X.; Wu, J.; Ding, C.; Chen, Y.; Wang, Y.; Wen, J.; et al. Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 2023, 13, 2203230. [Google Scholar] [CrossRef]
- Qiao, L.; Ye, T.; Wang, P.; Wang, T.; Zhang, L.; Sun, R.; Kong, W.; Yang, X. Crystallization enhancement and ionic defect passivation in wide-bandgap perovskite for efficient and stable all-perovskite tandem solar cells. Adv. Funct. Mater. 2024, 34, 2308908. [Google Scholar] [CrossRef]
- Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C.K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L.; et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Rudd, P.N.; Wang, Q.; Yang, Z.; Huang, J. Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 2020, 32, 2000995. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Wang, Q.; Dong, Q.; Yuan, Y.; Fang, Y.; Huang, J. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 2016, 18, 30484. [Google Scholar] [CrossRef] [PubMed]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Ryan, J.W.; Miyano, K.J. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Mater. Chem. C 2017, 5, 8819. [Google Scholar] [CrossRef]
- Grill, I.; Aygüler, M.F.; Bein, T.; Docampo, P.; Hartmann, N.F.; Handloser, M.; Hartschuh, A. Charge transport limitations in perovskite solar cells: The effect of charge extraction layers. ACS Appl. Mater. Interfaces 2017, 9, 37655. [Google Scholar] [CrossRef] [PubMed]
- Głowienka, D.; Zhang, D.; Di Giacomo, F.; Najafi, M.; Veenstra, S.; Szmytkowski, J.; Galagan, Y. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy 2020, 67, 104186. [Google Scholar] [CrossRef]
- Levine, I.; Al-Ashouri, A.; Musiienko, A.; Hempel, H.; Magomedov, A.; Drevilkauskaite, A.; Getautis, V.; Menzel, D.; Hinrichs, K.; Unold, T.; et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 2021, 5, 2915. [Google Scholar] [CrossRef]
- Xue, J.; Wang, R.; Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 2020, 5, 809. [Google Scholar] [CrossRef]
- Stolterfoht, M.; Wolff, C.M.; Márquez, J.A.; Zhang, S.; Hages, C.J.; Rothhardt, D.; Albrecht, S.; Burn, P.L.; Meredith, P.; Unold, T.; et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 2018, 3, 847. [Google Scholar] [CrossRef]
- He, R.; Wang, W.; Yi, Z.; Lang, F.; Chen, C.; Luo, J.; Zhu, J.; Thiesbrummel, J.; Shah, S.; Wei, K.; et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 2023, 618, 80. [Google Scholar] [CrossRef]
- Veres, J.; Ogier, S.D.; Leeming, S.W.; Cupertino, D.C.; Mohialdin Khaffaf, S. Low- k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 2003, 13, 199. [Google Scholar] [CrossRef]
- Majewski, L.A.; Grell, M.; Ogier, S.D.; Veres, J. A novel gate insulator for flexible electronics. Org. Electron. 2003, 4, 27. [Google Scholar] [CrossRef]
- Zeng, J.; Bi, L.; Cheng, Y.; Xu, B.; Jen, A.K.-Y. Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability. Nano Res. Energy 2022, 1, 9120004. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, X.; Zhong, J.-X.; Feng, W.; Yang, M.; Tian, T.; Gong, L.; Wu, W.-Q. Chemical linkage and passivation at buried interface for thermally stable inverted perovskite solar cells with efficiency over 22%. CCS Chem. 2022, 5, 1802. [Google Scholar] [CrossRef]
- Ali, F.; Roldán-Carmona, C.; Sohail, M.; Nazeeruddin, M.K. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 2020, 10, 2002989. [Google Scholar] [CrossRef]
- Dai, Z.; Li, S.; Liu, X.; Chen, M.; Athanasiou, C.E.; Sheldon, B.W.; Gao, H.; Guo, P.; Padture, N.P. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability. Adv. Mater. 2022, 34, 2205301. [Google Scholar] [CrossRef]
- Song, S.; Park, E.Y.; Ma, B.S.; Kim, D.J.; Park, H.H.; Kim, Y.Y.; Shin, S.S.; Jeon, N.J.; Kim, T.-S.; Seo, J. Selective defect passivation and topographical control of 4-dimethylaminopyridine at grain boundary for efficient and stable planar perovskite solar cells. Adv. Energy Mater. 2021, 11, 2003382. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, I.; Kim, T.-S.; Lee, J.-Y. An interlocking fibrillar polymer layer for mechanical stability of perovskite solar cells. Adv. Mater. Interfaces 2020, 7, 2001425. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, R.; Mu, C.; Wang, Y.; Han, L.; Wu, Y.; Zhu, W.-H. Conjugated self-assembled monolayer as stable hole-selective contact for inverted perovskite solar cells. ACS Mater. Lett. 2022, 4, 1976. [Google Scholar] [CrossRef]
- Zhao, Y.-C.; Zhou, W.-K.; Zhou, X.; Liu, K.-H.; Yu, D.-P.; Zhao, Q. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light Sci. Appl. 2017, 6, e16243. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Grice, C.R.; Shrestha, N.; Zhao, D.; Liao, W.; Guan, L.; Awni, R.A.; Meng, W.; Cimaroli, A.J.; et al. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. ACS Energy Lett. 2017, 2, 1177. [Google Scholar] [CrossRef]
- Li, Z.; Jia, C.; Wan, Z.; Xue, J.; Cao, J.; Zhang, M.; Li, C.; Shen, J.; Zhang, C.; Li, Z. Hyperbranched polymer functionalized flexible perovskite solar cells with mechanical robustness and reduced lead leakage. Nat. Commun. 2023, 14, 6451. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Yi, Z.; Luo, Y.; Luo, J.; Wei, Q.; Lai, H.; Huang, H.; Zou, B.; Cui, G.; Wang, W.; et al. Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells. Adv. Sci. 2022, 9, e2203210. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.; Létoublon, A.; Paofai, S.; Raymond, S.; Ecolivet, C.; Rufflé, B.; Cordier, S.; Katan, C.; Saidaminov, M.I.; Zhumekenov, A.A.; et al. Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 2018, 121, 085502. [Google Scholar] [CrossRef] [PubMed]
- Mela, I.; Poudel, C.; Anaya, M.; Delport, G.; Frohna, K.; Macpherson, S.; Doherty, T.A.S.; Scheeder, A.; Stranks, S.D.; Kaminski, C.F. Revealing nanomechanical domains and their transient behavior in mixed-halide perovskite films. Adv. Funct. Mater. 2021, 31, 2100293. [Google Scholar] [CrossRef]
- Sun, S.; Isikgor, F.H.; Deng, Z.; Wei, F.; Kieslich, G.; Bristowe, P.D.; Ouyang, J.; Cheetham, A.K. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem 2017, 10, 3740. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Fang, Y.; Kieslich, G.; White, T.J.; Cheetham, A.K.J. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. Mater. Chem. A 2015, 3, 18450. [Google Scholar] [CrossRef]
- Rakita, Y.; Cohen, S.R.; Kedem, N.K.; Hodes, G.; Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Commun. 2015, 5, 623. [Google Scholar] [CrossRef]
- Eames, C.; Frost, J.M.; Barnes, P.R.F.; O’Regan, B.C.; Walsh, A.; Islam, M.S. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, F.; Du, L.; Jiang, Y.; Gou, Y.; Liu, X.; Wu, H.; Zhang, J.; Qiu, Z.; Li, C.; Ye, J.; et al. Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation. Nanomaterials 2024, 14, 963. https://doi.org/10.3390/nano14110963
Cao F, Du L, Jiang Y, Gou Y, Liu X, Wu H, Zhang J, Qiu Z, Li C, Ye J, et al. Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation. Nanomaterials. 2024; 14(11):963. https://doi.org/10.3390/nano14110963
Chicago/Turabian StyleCao, Fangfang, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, and et al. 2024. "Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation" Nanomaterials 14, no. 11: 963. https://doi.org/10.3390/nano14110963
APA StyleCao, F., Du, L., Jiang, Y., Gou, Y., Liu, X., Wu, H., Zhang, J., Qiu, Z., Li, C., Ye, J., Li, Z., & Xiao, C. (2024). Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation. Nanomaterials, 14(11), 963. https://doi.org/10.3390/nano14110963