Encapsulation and Evolution of Polyynes Inside Single-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Artyukhov, V.I.; Lee, H.; Xu, F.; Yakobson, B.I. Carbyne from first principles: Chain of C atoms, a nanorod or a nanorope. ACS Nano 2013, 7, 10075–10082. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, F. Polyynes: Synthesis, Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Casari, C.S.; Tommasini, M.; Tykwinski, R.R.; Milani, A. Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 2016, 8, 4414–4435. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Tsuji, T.; Kuboyama, S.; Yoon, S.-H.; Korai, Y.; Tsujimoto, T.; Kubo, K.; Mori, A.; Mochida, I. Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Chem. Phys. Lett. 2002, 355, 101–108. [Google Scholar] [CrossRef]
- Lucotti, A.; Tommasini, M.; Del Zoppo, M.; Castiglioni, C.; Zerbi, G.; Cataldo, F.; Casari, C.; Bassi, A.L.; Russo, V.; Bogana, M.; et al. Raman and SERS investigation of isolated sp carbon chains. Chem. Phys. Lett. 2006, 417, 78–82. [Google Scholar] [CrossRef]
- Cataldo, F. Synthesis of polyynes in a submerged electric arc in organic solvents. Carbon 2004, 42, 129–142. [Google Scholar] [CrossRef]
- Chalifoux, W.A.; Tykwinski, R.R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2010, 2, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Gibtner, T.; Hampel, F.; Gisselbrecht, J.P.; Hirsch, A. End-cap stabilized oligoynes: Model compounds for the linear sp carbon allotrope carbyne. Chem.–A Eur. J. 2002, 8, 408–432. [Google Scholar] [CrossRef]
- Krempe, M.; Lippert, R.; Hampel, F.; Ivanović-Burmazović, I.; Jux, N.; Tykwinski, R.R. Pyridyl-endcapped polyynes: Stabilized wire-like molecules. Angew. Chem. 2016, 55, 14802–14806. [Google Scholar] [CrossRef]
- Kendall, J.; McDonald, R.; Ferguson, M.J.; Tykwinski, R.R. Synthesis and solid-state structure of perfluorophenyl end-capped polyynes. Org. Lett. 2008, 10, 2163–2166. [Google Scholar] [CrossRef]
- Hoye, T.R.; Baire, B.; Niu, D.; Willoughby, P.H.; Woods, B.P. The hexadehydro-Diels–Alder reaction. Nature 2012, 490, 208–212. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, Y.; Gamez, F.G.; Ferguson, M.J.; Casado, J.; Tykwinski, R.R. The loss of endgroup effects in long pyridyl-endcapped oligoynes on the way to carbyne. Nat. Chem. 2020, 12, 1143. [Google Scholar] [CrossRef] [PubMed]
- Patrick, C.W.; Gao, Y.; Gupta, P.; Thompson, A.L.; Parker, A.W.; Anderson, H.L. Masked alkynes for synthesis of threaded carbon chains. Nat. Chem. 2024, 16, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zheng, W.; Sun, L.; Kang, F.; Zhou, Z.; Xu, W. On-surface synthesis and characterization of polyynic carbon chains. Natl. Sci. Rev. 2024, 11, nwae031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Shi, L. A review of linear carbon chains. Chin. Chem. Lett. 2020, 31, 1746–1756. [Google Scholar] [CrossRef]
- Wang, C.; Batsanov, A.S.; Bryce, M.R.; Martín, S.; Nichols, R.J.; Higgins, S.J.; García-Suárez, V.M.; Lambert, C.J. Oligoyne single molecule wires. J. Am. Chem. Soc. 2009, 131, 15647–15654. [Google Scholar] [CrossRef] [PubMed]
- Eisler, S.; Slepkov, A.D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F.A.; Tykwinski, R.R. Polyynes as a model for carbyne: Synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 2005, 127, 2666–2676. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ando, Y.; Liu, Y.; Jinno, M.; Suzuki, T. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 2003, 90, 187401. [Google Scholar] [CrossRef] [PubMed]
- Andrade, N.; Vasconcelos, T.; Gouvea, C.; Archanjo, B.; Achete, C.; Kim, Y.; Endo, M.; Fantini, C.; Dresselhaus, M.; Filho, A.S. Linear carbon chains encapsulated in multiwall carbon nanotubes: Resonance Raman spectroscopy and transmission electron microscopy studies. Carbon 2015, 90, 172–180. [Google Scholar] [CrossRef]
- Shi, L.; Sheng, L.; Yu, L.; An, K.; Ando, Y.; Zhao, X. Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires. Nano Res. 2011, 4, 759–766. [Google Scholar] [CrossRef]
- Heeg, S.; Shi, L.; Poulikakos, L.V.; Pichler, T.; Novotny, L. Carbon nanotube chirality determines properties of encapsulated linear carbon chain. Nano Lett. 2018, 18, 5426–5431. [Google Scholar] [CrossRef]
- Pham, T.; Oh, S.; Stetz, P.; Onishi, S.; Kisielowski, C.; Cohen, M.L.; Zettl, A. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 2018, 361, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.E.; Miyata, Y.; Kitaura, R.; Nishimura, Y.; Nishimoto, Y.; Irle, S.; Warner, J.H.; Kataura, H.; Shinohara, H. Growth of carbon nanotubes via twisted graphene nanoribbons. Nat. Commun. 2013, 4, 2548. [Google Scholar] [CrossRef] [PubMed]
- Khlobystov, A.N. Carbon nanotubes: From nano test tube to nano-reactor. ACS Nano 2011, 5, 9306–9312. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, R.; Nakanishi, R.; Saito, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew. Chem. Int. Ed. 2009, 48, 8298–8302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Kitaura, R.; Hara, H.; Irle, S.; Shinohara, H. Growth of linear carbon chains inside thin double-wall carbon nanotubes. J. Phys. Chem. C 2011, 115, 13166–13170. [Google Scholar] [CrossRef]
- Chang, W.; Liu, F.; Liu, Y.; Zhu, T.; Fang, L.; Li, Q.; Liu, Y.; Zhao, X. Smallest carbon nanowires made easy: Long linear carbon chains confined inside single-walled carbon nanotubes. Carbon 2021, 183, 571–577. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Zhu, T.; Li, H.; Liu, Y.; Zhao, X. Effects of precursor molecules on polyyne formation by arc discharge between two copper electrodes. Chem. Phys. Lett. 2019, 730, 64–69. [Google Scholar] [CrossRef]
- Fujimori, T.; Morelos-Gomez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Young Hong, S.; et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, Y.; Jagota, A.; Zheng, M. Machine learning-guided systematic search of DNA sequences for sorting carbon nanotubes. ACS Nano 2022, 16, 4705–4713. [Google Scholar] [CrossRef]
- Tabata, H.; Fujii, M.; Hayashi, S.; Doi, T.; Wakabayashi, T. Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 2006, 44, 3168–3176. [Google Scholar] [CrossRef]
- Ravagnan, L.; Siviero, F.; Lenardi, C.; Piseri, P.; Barborini, E.; Milani, P.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 2002, 89, 285506. [Google Scholar] [CrossRef] [PubMed]
- D’urso, L.; Grasso, G.; Messina, E.; Bongiorno, C.; Scuderi, V.; Scalese, S.; Puglisi, O.; Spoto, G.; Compagnini, G. Role of linear carbon chains in the aggregation of copper, silver, and gold nanoparticles. J. Phys. Chem. C 2010, 114, 907–915. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Shi, L.; Rohringer, P.; Wanko, M.; Rubio, A.; Waßerroth, S.; Reich, S.; Cambré, S.; Wenseleers, W.; Ayala, P.; Pichler, T. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Phys. Rev. Mater. 2017, 1, 075601. [Google Scholar] [CrossRef]
- Cui, W.; Ayala, P.; Pichler, T.; Shi, L. Unraveling the governing properties of confined carbyne through the interaction with its carbon nanotube host. Carbon 2024, 219, 118784. [Google Scholar] [CrossRef]
- Gaufrès, E.; Tang, N.Y.-W.; Lapointe, F.; Cabana, J.; Nadon, M.-A.; Cottenye, N.; Raymond, F.; Szkopek, T.; Martel, R. Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging. Nat. Photon. 2014, 8, 73–79. [Google Scholar] [CrossRef]
- Nishide, D.; Wakabayashi, T.; Sugai, T.; Kitaura, R.; Kataura, H.; Achiba, Y.; Shinohara, H. Raman spectroscopy of size-selected linear polyyne molecules C2nH2 (n = 4−6) encapsulated in single-wall carbon nanotubes. J. Phys. Chem. C 2007, 111, 5178–5183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.; Li, Y.; Chen, Y.; Cui, W.; Lin, Z.; Zhang, Y.; Shi, L. Encapsulation and Evolution of Polyynes Inside Single-Walled Carbon Nanotubes. Nanomaterials 2024, 14, 966. https://doi.org/10.3390/nano14110966
Tang K, Li Y, Chen Y, Cui W, Lin Z, Zhang Y, Shi L. Encapsulation and Evolution of Polyynes Inside Single-Walled Carbon Nanotubes. Nanomaterials. 2024; 14(11):966. https://doi.org/10.3390/nano14110966
Chicago/Turabian StyleTang, Kunpeng, Yinong Li, Yingzhi Chen, Weili Cui, Zhiwei Lin, Yifan Zhang, and Lei Shi. 2024. "Encapsulation and Evolution of Polyynes Inside Single-Walled Carbon Nanotubes" Nanomaterials 14, no. 11: 966. https://doi.org/10.3390/nano14110966
APA StyleTang, K., Li, Y., Chen, Y., Cui, W., Lin, Z., Zhang, Y., & Shi, L. (2024). Encapsulation and Evolution of Polyynes Inside Single-Walled Carbon Nanotubes. Nanomaterials, 14(11), 966. https://doi.org/10.3390/nano14110966