Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MoS2 Nanosheets
2.2. Preparation of MoS2 with Different Amounts of NaBH4
2.3. Material Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019, 48, 1272–1341. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Song, Y.F.; Xia, Y.Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, M.F.; Latif, U.; Sheikh, Z.A.; Abubakr, M.; Rehman, S.; Khan, K.; Khan, M.A.; Kim, H.; Ouladsmane, M.; Rehman, M.A.; et al. A comprehensive study of Bi2Sr2Co2Oy misfit layered oxide as a supercapacitor electrode material. Inorg. Chem. Commun. 2023, 158, 111487. [Google Scholar] [CrossRef]
- Wei, Y.; Tang, B.; Liang, X.; Zhang, F.; Tang, Y. An ultrahigh-mass-loading integrated free-standing functional all-carbon positive electrode prepared using an architecture tailoring strategy for high-energy-density dual-ion batteries. Adv. Mater. 2023, 35, 2302086. [Google Scholar] [CrossRef] [PubMed]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.Z.; Zhou, D.; Pang, L.X.; Sun, S.K.; Zhou, T.; Su, J.Z. Perspectives on working voltage of aqueous supercapacitors. Small 2022, 18, 2106360. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.C.; Wang, W.Q.; Yang, L.F.; Chen, J.; Li, X.W.; Yuan, Y.Z.; Tian, X.H.; Wang, G.C. Fully integrated design of intrinsically stretchable electrodes for stretchable. Energy Storage Mater. 2021, 39, 130–138. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Kumar, R.; Joanni, E.; Singh, R.K.; Shim, J.J. Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 2022, 10, 13190–13240. [Google Scholar] [CrossRef]
- Heine, T. Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties. Acc. Chem. Res. 2015, 48, 65–72. [Google Scholar] [CrossRef]
- Butler, S.Z.; Hollen, S.M.; Cao, L.Y.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.X.; Ismach, A.F.; et al. Progress, Challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.X.; Lei, W.; Zhang, S.W.; Liu, Y.Q.; Wallace, G.G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Peng, L.L.; Zhu, Y.; Li, H.S.; Yu, G.H. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183–6199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F.; Sun, H.N.; Bai, X. Two-dimensional transition metal dichalcogenides: Synthesis, biomedical applications and biosafety evaluation. Front. Bioeng. Biotechnol. 2020, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Walker, W.R.; Xu, L.Z.; Krysiak, O.; She, Z.M.; Pope, M.A. Intrinsic capacitance of molybdenum disulfide. ACS Nano 2020, 14, 5636–5648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, Y.P.; Yu, J.; Ye, Q.T.; Yang, L.; Li, Y.; Fan, H.J. Biaxially strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution. Adv. Mater. 2022, 34, 2202195. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, L.L.; Cai, T.; Zhang, S.Q.; Liu, Y.T.; Song, Y.Z.; Dong, X.R.; Hu, L. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2017, 321, 366–374. [Google Scholar] [CrossRef]
- Nie, K.K.; Qu, X.Y.; Gao, D.W.; Li, B.J.; Yuan, Y.L.; Liu, Q.; Li, X.H.; Chong, S.K.; Liu, Z.Q. Engineering phase stability of semimetallic MoS2 monolayers for sustainable electrocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2022, 14, 19847–19856. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, Z.Y.; Xu, X.L.; Zhang, Z.H.; Li, P.; Fang, X.; Zhang, K.; Yuan, K.; Liu, K.H.; Ran, G.Z.; et al. Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy 2018, 51, 786–792. [Google Scholar] [CrossRef]
- Liu, M.Q.; Wang, J.A.; Klysubun, W.; Wang, G.G.; Sattayaporn, S.; Li, F.; Cai, Y.W.; Zhang, F.C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260. [Google Scholar] [CrossRef]
- Yang, X.; Mao, J.J.; Niu, H.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.L.; Cao, D.X.; Yan, J. NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors. Chem. Eng. J. 2021, 406, 126713. [Google Scholar] [CrossRef]
- Ma, G.F.; Peng, H.; Mu, J.J.; Huang, H.H.; Zhou, X.Z.; Lei, Z.Q. In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J. Power Sources 2013, 229, 72–78. [Google Scholar] [CrossRef]
- Wang, H.Y.; Ren, D.Y.; Zhu, Z.J.; Saha, P.; Jiang, H.; Li, C.Z. Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries. Chem. Eng. J. 2016, 288, 179–184. [Google Scholar] [CrossRef]
- Qi, K.; Cui, X.Q.; Gu, L.; Yu, S.S.; Fan, X.F.; Luo, M.C.; Xu, S.; Li, N.B.; Zheng, L.R.; Zhang, Q.H.; et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y.C.; Liu, H.Q.; Kang, H.Y.; Cao, K.Z.; Wang, Q.H.; Zhang, C.L.; Wang, Y.J.; Yuan, H.T.; Jiao, L.F. Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives. J. Power Sources 2015, 300, 358–364. [Google Scholar] [CrossRef]
- Li, J.D.; Listwan, A.; Liang, J.X.; Shi, F.; Li, K.; Jia, J.P. High proportion of 1 T phase MoS2 prepared by a simple solvothermal method for high-efficiency electrocatalytic hydrogen evolution. Chem. Eng. J. 2021, 422, 130100. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, M.; Wang, L.L.; Ding, Y.B.; Zhang, Z.Z.; Tang, Y.H.; Liu, C.B.; Luo, S.L. 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chem. Eng. J. 2019, 366, 163–171. [Google Scholar] [CrossRef]
- Gao, G.P.; Jiao, Y.; Ma, F.X.; Jiao, Y.L.; Waclawik, E.; Du, A.J. Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T’ phase. J. Phys. Chem. C 2015, 119, 13124–13128. [Google Scholar] [CrossRef]
- Hong, Z.A.; Hong, W.T.; Wang, B.C.; Cai, Q.; He, X.; Liu, W. Stable 1T-2H MoS2 heterostructures for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 460, 141858. [Google Scholar] [CrossRef]
- Feng, N.; Meng, R.J.; Zu, L.H.; Feng, Y.T.; Peng, C.X.; Huang, J.M.; Liu, G.L.; Chen, B.J.; Yang, J.H. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat. Commun. 2019, 10, 1372. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Song, W.J.; Park, H.; Selvaraj, V.; Moon, S.; Oh, J.; Kwak, M.J.; Park, G.; Kong, M.; Pal, M.; et al. Electroactive 1T-MoS2 fluoroelastomer ink for intrinsically stretchable solid-state in-plane supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 26870–26878. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Janas, D.; Chandra, R. Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor applications. Carbon 2021, 177, 291–303. [Google Scholar] [CrossRef]
Samples | MoS2 | MoS2-0.2595 | MoS2-0.3894 | MoS2-0.5192 |
---|---|---|---|---|
Potential window (V) | 0.7 | 0.8 | 0.9 | 0.8 |
Specific capacitance (F g−1) | 106 | 148.2 | 150 | 130 |
Rate performance (%) | 50.1 | 56.9 | 60.8 | 49.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Wang, Q.; Meng, L.; Zhao, Y.; Xu, J.; Sun, M.; Li, Z.; Li, H.; Chen, H.; Zhang, Y. Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance. Nanomaterials 2024, 14, 968. https://doi.org/10.3390/nano14110968
Jia Q, Wang Q, Meng L, Zhao Y, Xu J, Sun M, Li Z, Li H, Chen H, Zhang Y. Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance. Nanomaterials. 2024; 14(11):968. https://doi.org/10.3390/nano14110968
Chicago/Turabian StyleJia, Qingling, Qi Wang, Lingshuai Meng, Yujie Zhao, Jing Xu, Meng Sun, Zijian Li, Han Li, Huiyu Chen, and Yongxing Zhang. 2024. "Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance" Nanomaterials 14, no. 11: 968. https://doi.org/10.3390/nano14110968
APA StyleJia, Q., Wang, Q., Meng, L., Zhao, Y., Xu, J., Sun, M., Li, Z., Li, H., Chen, H., & Zhang, Y. (2024). Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance. Nanomaterials, 14(11), 968. https://doi.org/10.3390/nano14110968