Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage
Abstract
:1. Introduction
2. Principles and Mechanisms of Hydrogen Storage in Nanomaterials
2.1. Size and Surface Effects on Hydrogen Storage Properties
2.2. Key Performance Indicators and Characterization Techniques
3. Typical Nanomaterial Systems for Hydrogen Storage
3.1. Lightweight Metal Nanoparticles and Their Composites
3.2. Porous Nanomaterials (Carbon-Based Materials, MOFs/COFs, BNHs)
3.3. Other Emerging Nanomaterial Platforms (MXenes, LDHs)
4. Surface and Interface Engineering Strategies for Nanomaterials
4.1. Surface Modification for Enhanced Hydrogen Storage
4.2. Nanocomposite Design for Synergistic Enhancement
4.3. Interface Engineering in Nanomaterials
5. Catalytic Enhancement by Nanocatalysts
5.1. Metal and Metal Oxide Nanocatalysts
5.2. Non-Metal Nanocatalysts and Their Catalytic Mechanisms
6. Summary and Outlook
6.1. Key Progress in Nanomaterials for Hydrogen Storage
6.2. Challenges and Opportunities for Nanomaterial-Based Hydrogen Storage
6.3. Strategies and Directions for Material Design and Optimization
- Developing new nanomaterial systems with high surface area, tunable porosity, and strong hydrogen binding sites. This can be achieved by exploring new compositions, structures, and functionalities of nanomaterials, such as novel MOFs, COFs, and 2D materials with tailored pore sizes and surface chemistries.
- Optimizing the surface and interface structures of existing nanomaterials through advanced engineering strategies. This includes the fine-tuning of surface functionalities, the creation of heterojunctions and interfacial defects, and the design of core-shell and hierarchical nanostructures with synergistic effects.
- Enhancing the catalytic activity and selectivity of nanocatalysts for hydrogen storage through rational design and engineering. This involves the development of new catalytic systems based on earth-abundant elements, the optimization of catalyst-support interactions, and the engineering of electronic and geometric structures of catalysts.
- Developing simple, scalable, and cost-effective synthesis methods for nanomaterials with controlled size, shape, and composition. This can be achieved by exploring new synthesis routes, such as mechanochemical synthesis, microwave-assisted synthesis, and bio-inspired synthesis, and by optimizing the synthesis parameters and conditions.
- Improving the stability and safety of nanomaterials under practical operating conditions through surface protection, nanostructure optimization, and compositional tuning. This includes the development of protective coatings, the engineering of stable nanostructures, and the incorporation of stabilizing additives and dopants.
- Integrating computational modeling and machine learning techniques with experimental studies for the rational design and screening of nanomaterials for hydrogen storage. This involves the development of accurate and efficient computational models, the integration of data-driven approaches with physical insights, and the establishment of materials databases and platforms for knowledge sharing and collaboration.
Author Contributions
Funding
Conflicts of Interest
References
- Georgeson, L.; Maslin, M.; Poessinouw, M. Clean up energy innovation. Nature 2016, 538, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and Physical Solutions for Hydrogen Storage. Angew. Chem. Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, H.; Shaw, L. New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chem. Eng. J. 2020, 385, 123856. [Google Scholar] [CrossRef]
- Lim, D.W.; Yoon, J.W.; Ryu, K.Y.; Suh, M.P. Magnesium nanocrystals embedded in a metal-organic framework: Hybrid hydrogen storage with synergistic effect on physi- and chemisorption. Angew. Chem. Int. Ed. Engl. 2012, 51, 9814–9817. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, C.-G.; Zhou, H.; Ye, E.; Xu, J.; Li, Z.; Loh, X.J. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research 2021, 2021, 3750689. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Ali, S.; Mansha, M.; Sadaqat, M.; Ashiq, M.N.; Tahir, M.N.; Khan, S.A. Exploring Nanomaterials for Hydrogen Storage: Advances, Challenges, and Perspectives. Chem.—Asian J. 2024, e202400365. [Google Scholar] [CrossRef]
- Boateng, E.; Thiruppathi, A.R.; Hung, C.-K.; Chow, D.; Sridhar, D.; Chen, A. Functionalization of graphene-based nanomaterials for energy and hydrogen storage. Electrochim. Acta 2023, 452, 142340. [Google Scholar] [CrossRef]
- Simanullang, M.; Prost, L. Nanomaterials for on-board solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2022, 47, 29808–29846. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, N.; Xu, Q.; Yu, J. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials. Adv. Mater. 2020, 32, 2001818. [Google Scholar] [CrossRef]
- Boateng, E.; Chen, A. Recent advances in nanomaterial-based solid-state hydrogen storage. Mater. Today Adv. 2020, 6, 100022. [Google Scholar] [CrossRef]
- Ding, Z.; Lu, Y.; Li, L.; Shaw, L. High reversible capacity hydrogen storage through Nano-LiBH4 + Nano-MgH2 system. Energy Storage Mater. 2019, 20, 24–35. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Y.; Züttel, A. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chem. Soc. Rev. 2024, 53, 972–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Z.X.; Yang, F.S.; Feng, P.H.; Wang, Y.Q. Hydrogen storage properties and mechanisms of magnesium based alloys with mesoporous surface. Int. J. Hydrogen Energy 2016, 41, 2771–2780. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Zhang, W.; Fang, F.; Li, J.; Hu, J.; Gu, C.; Sun, W.; Gao, M.; Pan, H.; et al. In situ creation of a catalytic multiphase and multiscale surroundings for remarkable hydrogen storage performance of MgH2. J. Mater. Chem. A 2024, 12, 2423–2434. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Jiang, L. 1D Nanoconfined Ordered-Assembly Reaction. Adv. Mater. Interfaces 2019, 6, 1900104. [Google Scholar] [CrossRef]
- Pyle, D.S.; Gray, E.M.; Webb, C.J. Hydrogen storage in carbon nanostructures via spillover. Int. J. Hydrogen Energy 2016, 41, 19098–19113. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, S.; Zhang, N.; Wang, L.; Chen, X.; Li, Z. Three-dimensional nanopores on monolayer graphene for hydrogen storage. Mater. Chem. Phys. 2018, 209, 134–145. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Li, Y.; Ding, Z. Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology. Molecules 2024, 29, 1767. [Google Scholar] [CrossRef]
- Huang, Y.; Xia, G.; Chen, J.; Zhang, B.; Li, Q.; Yu, X. One-step uniform growth of magnesium hydride nanoparticles on graphene. Prog. Nat. Sci. Mater. Int. 2017, 27, 81–87. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hou, Q.; Hao, Y.; Ding, Z. Ball Milling Innovations Advance Mg-Based Hydrogen Storage Materials Towards Practical Applications. Materials 2024, 17, 2510. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, Y.; Li, Y.; Hao, Y.; Wu, P.; Ding, Z. Recent Advances in the Preparation Methods of Magnesium-Based Hydrogen Storage Materials. Molecules 2024, 29, 2451. [Google Scholar] [CrossRef]
- Zhang, L.; Nyahuma, F.M.; Zhang, H.; Cheng, C.; Zheng, J.; Wu, F.; Chen, L. Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2. Green. Energy Environ. 2023, 8, 589–600. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Nawaz, M.; Ullah, H.; Uddin, I.; Bangesh, M.A.; Khan, Q.U. Synthesis of magnesium and Mg@Ni core-shell nanoparticles by microemulsion for hydrogen storage applications. J. Mater. Sci. Mater. Electron. 2022, 33, 21321–21335. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, C.; Cheng, L.; Abdul Wahab, M.; Cui, J.; Zou, J.; Zhu, M.; Yao, X. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys. Chem. Chem. Phys. 2013, 15, 5814–5820. [Google Scholar] [CrossRef] [PubMed]
- Abdulkreem-Alsultan, G.; Islam, A.; Janaun, J.; Mastuli, M.S.; Taufiq-Yap, Y.H. Synthesis of structured carbon nanorods for efficient hydrogen storage. Mater. Lett. 2016, 179, 57–60. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, X.; Wang, X.; Chen, M.; Lu, Y.; Liu, M.; Chen, L. Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2. Nanoscale 2019, 11, 7465–7473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, K.; Huang, T.; Sun, P.; Wang, L.; Lu, Y.; Fang, Z.Z. In situ formation of nanocrystalline MgH2 through room temperature hydrogenation. Mater. Des. 2022, 218, 110729. [Google Scholar] [CrossRef]
- Ruse, E.; Buzaglo, M.; Pri-Bar, I.; Shunak, L.; Nadiv, R.; Pevzner, S.; Siton-Mendelson, O.; Skripnyuk, V.M.; Rabkin, E.; Regev, O. Hydrogen storage kinetics: The graphene nanoplatelet size effect. Carbon 2018, 130, 369–376. [Google Scholar] [CrossRef]
- Jia, Z.; Zhao, B.; Zhao, Y.; Liu, B.; Yuan, J.; Zhang, J.; Zhu, Y.; Wu, Y.; Li, L. Boron nitride supported nickel nanoparticles as catalyst for enhancing the hydrogen storage properties of MgH2. J. Alloys Compd. 2022, 927, 166853. [Google Scholar] [CrossRef]
- Masika, E.; Mokaya, R. Hydrogen Storage in High Surface Area Carbons with Identical Surface Areas but Different Pore Sizes: Direct Demonstration of the Effects of Pore Size. J. Phys. Chem. C 2012, 116, 25734–25740. [Google Scholar] [CrossRef]
- Li, Y.; Chung, J.S.; Kang, S.G. First-Principles Computational Screening of Perovskite Hydrides for Hydrogen Release. ACS Comb. Sci. 2019, 21, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, H.; Zhu, M. AlH3 as a hydrogen storage material: Recent advances, prospects and challenges. Rare Met. 2021, 40, 3337–3356. [Google Scholar] [CrossRef]
- Li, Y.; Mi, Y.; Chung, J.S.; Kang, S.G. First-principles studies of K1−xMxMgH3 (M = Li, Na, Rb, or Cs) perovskite hydrides for hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 2232–2236. [Google Scholar] [CrossRef]
- Li, Y.; Chung, J.S.; Kang, S.G. First-principles rational design of M-doped LiBH4(010) surface for hydrogen release: Role of strain and dopants (M = Na, K, Al, F, or Cl). Int. J. Hydrogen Energy 2019, 44, 6065–6073. [Google Scholar] [CrossRef]
- de Jongh, P.E.; Wagemans, R.W.P.; Eggenhuisen, T.M.; Dauvillier, B.S.; Radstake, P.B.; Meeldijk, J.D.; Geus, J.W.; de Jong, K.P. The Preparation of Carbon-Supported Magnesium Nanoparticles using Melt Infiltration. Chem. Mater. 2007, 19, 6052–6057. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Liu, Y.; Dong, Z.; Cao, G.; Li, S.; Yan, M. Improved hydrogen storage properties of MgH2 by ball milling with AlH3: Preparations, de/rehydriding properties, and reaction mechanisms. J. Mater. Chem. A 2013, 1, 12527–12535. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Xie, T.; Chen, Y.a.; Lu, Y.; Liu, Z.; Li, Q.; Pan, F. Mg/MgH2 hydrogen storage system destabilized by recyclable AlH3–NaBH4 composite. Int. J. Hydrogen Energy 2022, 47, 35737–35746. [Google Scholar] [CrossRef]
- Paskevicius, M.; Tian, H.-Y.; Sheppard, D.A.; Webb, C.J.; Pitt, M.P.; Gray, E.M.; Kirby, N.M.; Buckley, C.E. Magnesium Hydride Formation within Carbon Aerogel. J. Phys. Chem. C 2011, 115, 1757–1766. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Ma, T.; Li, K.; Ye, F.; Wang, X.; Jiao, L.; Yuan, H.; Wang, Y. Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage. J. Alloys Compd. 2020, 825, 153953. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Sandhya, K.S.; Ramasamy, D.; Shaula, A.; Fagg, D.P. Transformation of Metallic Ti to TiH2 Phase in the Ti/MgH2 Composite and Its Influence on the Hydrogen Storage Behavior of MgH2. ChemPhysChem 2020, 21, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Edalati, K.; Akiba, E.; Botta, W.J.; Estrin, Y.; Floriano, R.; Fruchart, D.; Grosdidier, T.; Horita, Z.; Huot, J.; Li, H.-W.; et al. Impact of severe plastic deformation on kinetics and thermodynamics of hydrogen storage in magnesium and its alloys. J. Mater. Sci. Technol. 2023, 146, 221–239. [Google Scholar] [CrossRef]
- Edalati, K.; Akiba, E.; Horita, Z. High-pressure torsion for new hydrogen storage materials. Sci. Technol. Adv. Mater. 2018, 19, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Rawal, A.; Quadir, M.Z.; Aguey-Zinsou, K.-F. Formation of aluminium hydride (AlH3) via the decomposition of organoaluminium and hydrogen storage properties. Int. J. Hydrogen Energy 2018, 43, 16749–16757. [Google Scholar] [CrossRef]
- Peng, H.; Guan, J.; Yan, Q.; Fu, X.; Huang, T.; Peng, R.; Jin, B. Kinetics and mechanism of hydrogen release from isothermal decomposition of AlH3. J. Alloys Compd. 2023, 960, 170677. [Google Scholar] [CrossRef]
- Bramwell, P.L.; Lentink, S.; Ngene, P.; de Jongh, P.E. Effect of Pore Confinement of LiNH2 on Ammonia Decomposition Catalysis and the Storage of Hydrogen and Ammonia. J. Phys. Chem. C 2016, 120, 27212–27220. [Google Scholar] [CrossRef]
- Osborn, W.; Markmaitree, T.; Shaw, L.L.; Hu, J.-Z.; Kwak, J.; Yang, Z. Low temperature milling of the LiNH2 + LiH hydrogen storage system. Int. J. Hydrogen Energy 2009, 34, 4331–4339. [Google Scholar] [CrossRef]
- Hu, Y.H.; Ruckenstein, E. Ultrafast Reaction between Li3N and LiNH2 To Prepare the Effective Hydrogen Storage Material Li2NH. Ind. Eng. Chem. Res. 2006, 45, 4993–4998. [Google Scholar] [CrossRef]
- Broom, D.P.; Webb, C.J.; Fanourgakis, G.S.; Froudakis, G.E.; Trikalitis, P.N.; Hirscher, M. Concepts for improving hydrogen storage in nanoporous materials. Int. J. Hydrogen Energy 2019, 44, 7768–7779. [Google Scholar] [CrossRef]
- Suresh, K.; Aulakh, D.; Purewal, J.; Siegel, D.J.; Veenstra, M.; Matzger, A.J. Optimizing Hydrogen Storage in MOFs through Engineering of Crystal Morphology and Control of Crystal Size. J. Am. Chem. Soc. 2021, 143, 10727–10734. [Google Scholar] [CrossRef]
- Zafar, M.; Iqbal, T.; Fatima, S.; Sanaullah, Q.; Aman, S. Carbon nanotubes for production and storage of hydrogen: Challenges and development. Chem. Pap. 2022, 76, 609–625. [Google Scholar] [CrossRef]
- Vergara-Rubio, A.; Ribba, L.; Picón Borregales, D.E.; Sapag, K.; Candal, R.; Goyanes, S. Ultramicroporous Carbon Nanofibrous Mats for Hydrogen Storage. ACS Appl. Nano Mater. 2022, 5, 15353–15361. [Google Scholar] [CrossRef]
- Jokar, F.; Nguyen, D.D.; Pourkhalil, M.; Pirouzfar, V. Effect of Single- and Multiwall Carbon Nanotubes with Activated Carbon on Hydrogen Storage. Chem. Eng. Technol. 2021, 44, 387–394. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Sun, Y. Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. Int. J. Hydrogen Energy 2006, 31, 259–264. [Google Scholar] [CrossRef]
- Kudiiarov, V.; Lyu, J.; Semyonov, O.; Lider, A.; Chaemchuen, S.; Verpoort, F. Prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage. Appl. Mater. Today 2021, 25, 101208. [Google Scholar] [CrossRef]
- Sule, R.; Mishra, A.K.; Nkambule, T.T. Recent advancement in consolidation of MOFs as absorbents for hydrogen storage. Int. J. Energy Res. 2021, 45, 12481–12499. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; Zare, S.G.; Farouk, N.; Anqi, A.E.; Issakhov, A.; Raise, A. Potential application of metal-organic frameworks (MOFs) for hydrogen storage: Simulation by artificial intelligent techniques. Int. J. Hydrogen Energy 2021, 46, 36336–36347. [Google Scholar] [CrossRef]
- Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. Int. J. Hydrogen Energy 2009, 34, 1377–1382. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Ding, Z.; Jiang, H.; Yang, H.; Du, W.; Zheng, Y.; Huo, K.; Shaw, L.L. MOFs-Based Materials for Solid-State Hydrogen Storage: Strategies and Perspectives. Chem. Eng. J. 2024, 485, 149665. [Google Scholar] [CrossRef]
- Shahzad, U.; Marwani, H.M.; Saeed, M.; Asiri, A.M.; Repon, M.R.; Althomali, R.H.; Rahman, M.M. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. Chem. Rec. 2024, 24, e202300285. [Google Scholar] [CrossRef]
- Cao, S.; Li, B.; Zhu, R.; Pang, H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J. 2019, 355, 602–623. [Google Scholar] [CrossRef]
- Chen, Z.; Kirlikovali, K.O.; Idrees, K.B.; Wasson, M.C.; Farha, O.K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, J.W.; Choi, J.H.; Kang, J.K. Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage. Appl. Phys. Lett. 2008, 92, 173102. [Google Scholar] [CrossRef]
- Klontzas, E.; Tylianakis, E.; Froudakis, G.E. Designing 3D COFs with Enhanced Hydrogen Storage Capacity. Nano Lett. 2010, 10, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Autrey, T. Boron–nitrogen–hydrogen (BNH) compounds: Recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy Environ. Sci. 2012, 5, 9257–9268. [Google Scholar] [CrossRef]
- Fu, P.; Wang, J.; Jia, R.; Bibi, S.; Eglitis, R.I.; Zhang, H.-X. Theoretical study on hydrogen storage capacity of expanded h-BN systems. Comput. Mater. Sci. 2017, 139, 335–340. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Wang, L.; Liu, H.; Wang, J.; Zhang, L.; Chen, X. Hydrogen storage in MXenes: Controlled adjustment of sorption by interlayer distance and transition metal elements. Int. J. Hydrogen Energy 2024, 50, 1555–1561. [Google Scholar] [CrossRef]
- Gao, H.; Shi, R.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L.; Hu, X. Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2. J. Magnes. Alloys 2023, 11, 3724–3735. [Google Scholar] [CrossRef]
- Thomas, T.; Bontha, S.; Bishnoi, A.; Sharma, P. MXene as a hydrogen storage material? A review from fundamentals to practical applications. J. Energy Storage 2024, 88, 111493. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, H.; Zhu, Y.; Li, S.; Zhang, J.; Li, L. Excellent catalytic activity of a two-dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Appl. Surf. Sci. 2019, 493, 431–440. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Hashmi, S.A.R.; Kim, K.-H. MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 2021, 85, 105989. [Google Scholar] [CrossRef]
- Ghotia, S.; Kumar, A.; Sudarsan, V.; Dwivedi, N.; Singh, S.; Kumar, P. Multilayered Ti3C2Tx MXenes: A prominent materials for hydrogen storage. Int. J. Hydrogen Energy 2024, 52, 100–107. [Google Scholar] [CrossRef]
- Chu, Y.Z.; Lau, K.C. First-principles study of hydrogen storage application of Ti3C2Tx monolayer MXene. Int. J. Hydrogen Energy 2024, 57, 1144–1151. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, D.; Fan, G.; Chen, Y.; Fan, Y.; Liu, B. Synergistic Effect of CeF3 Nanoparticles Supported on Ti3C2 MXene for Catalyzing Hydrogen Storage of NaAlH4. ACS Appl. Energy Mater. 2021, 4, 2820–2827. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, G.; Zhang, D.; Fan, Y.; Liu, B. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2. J. Alloys Compd. 2022, 914, 165291. [Google Scholar] [CrossRef]
- Alinavaz, S.; Ghiyasiyan-Arani, M.; Dawi, E.A.; Salavati-Niasari, M. Gd3Fe5O12/MgAl-LDH nanocomposites: Sonochemical synthesis, optimization and electrochemical hydrogen storage studies. Int. J. Hydrogen Energy 2023, 48, 28424–28434. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Bai, X. Effect of N-doping, exfoliation, defect-inducing of Ni-Fe layered double hydroxide (Ni-Fe LDH) nanosheets on catalytic hydrogen storage of N-ethylcarbazole over Ru/Ni-Fe LDH. Fuel 2021, 306, 121688. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, R.; Hong, F.; Ding, S.; Yang, J.; Li, R.; Fan, Y.; Liu, H.; Guo, J.; Lan, Z. Carbon-supported TiN composites serve as catalysts to enhance the (de)hydrogenation kinetics of MgH2. J. Energy Storage 2024, 83, 110760. [Google Scholar] [CrossRef]
- Han, Y.-J.; Park, S.-J. Influence of nickel nanoparticles on hydrogen storage behaviors of MWCNTs. Appl. Surf. Sci. 2017, 415, 85–89. [Google Scholar] [CrossRef]
- Mu, S.-C.; Tang, H.-L.; Qian, S.-H.; Pan, M.; Yuan, R.-Z. Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration. Carbon. 2006, 44, 762–767. [Google Scholar] [CrossRef]
- Tsai, P.-J.; Yang, C.-H.; Hsu, W.-C.; Tsai, W.-T.; Chang, J.-K. Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid. Int. J. Hydrogen Energy 2012, 37, 6714–6720. [Google Scholar] [CrossRef]
- Ramezani, Z.; Dehghani, H. Effect of nitrogen and sulfur co-doping on the performance of electrochemical hydrogen storage of graphene. Int. J. Hydrogen Energy 2019, 44, 13613–13622. [Google Scholar] [CrossRef]
- Jain, V.; Kandasubramanian, B. Functionalized graphene materials for hydrogen storage. J. Mater. Sci. 2020, 55, 1865–1903. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Lapkin, A.A.; Plucinski, P.K.; Friedrich, J.M.; Walsh, F.C. Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J. Phys. Chem. B 2005, 109, 19422–19427. [Google Scholar] [CrossRef]
- Koh, G.; Zhang, Y.-W.; Pan, H. First-principles study on hydrogen storage by graphitic carbon nitride nanotubes. Int. J. Hydrogen Energy 2012, 37, 4170–4178. [Google Scholar] [CrossRef]
- Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review. J. Energy Chem. 2019, 30, 132–144. [Google Scholar] [CrossRef]
- Baca, M.; Cendrowski, K.; Banach, P.; Michalkiewicz, B.; Mijowska, E.; Kalenczuk, R.J.; Zielinska, B. Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres. Int. J. Hydrogrn Energy 2017, 42, 30461–30469. [Google Scholar] [CrossRef]
- Surrey, A.; Bonatto Minella, C.; Fechler, N.; Antonietti, M.; Grafe, H.-J.; Schultz, L.; Rellinghaus, B. Improved hydrogen storage properties of LiBH4 via nanoconfinement in micro- and mesoporous aerogel-like carbon. Int. J. Hydrogrn Energy 2016, 41, 5540–5548. [Google Scholar] [CrossRef]
- Lu, C.; Zou, J.; Zeng, X.; Ding, W.; Shao, H. Enhanced hydrogen sorption properties of core-shell like structured Mg@NaBH4/MgB2 composite. J. Alloys Compd. 2019, 810, 151763. [Google Scholar] [CrossRef]
- Shao, L.; Liu, J.; Li, F.; Yang, J.; Zhang, X.; Li, S.; Li, Y.; Sun, P. Preparation and adsorption properties of TiO2/MoS2 nanocomposites. Mater. Res. Express 2019, 6, 055046. [Google Scholar] [CrossRef]
- Shi, W.; Hong, F.; Li, R.; Zhao, R.; Ding, S.; Liu, Z.; Qing, P.; Fan, Y.; Liu, H.; Guo, J.; et al. Improved hydrogen storage properties of MgH2 by Mxene (Ti3C2) supported MnO2. J. Energy Storage 2023, 72, 108738. [Google Scholar] [CrossRef]
- Wang, D.; Li, J.; Zheng, A.; Ma, H.; Pan, Z.; Qu, W.; Wang, L.; Han, J.; Wang, C.; Tian, Z. Quasi-Single-Layer MoS2 on MoS2/TiO2 Nanoparticles for Anthracene Hydrogenation. ACS Appl. Nano Mater. 2019, 2, 5096–5107. [Google Scholar] [CrossRef]
- Jiang, Q.; Jia, Z.; Lu, S.; Song, P.; Gao, Z.; Wang, Z.; Peng, T.; Bai, X.; Cui, H.; Tian, W.; et al. Novel NLi4-BGra/MgH2-based heterojunctions for efficient hydrogen storage and modulation of hydrogen-desorption temperature ranges. Ceram. Int. 2024, 50, 23058–23069. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, C.; Jiang, Q. Electric field induced enhancement of hydrogen storage capacity for Li atom decorated graphene with Stone-Wales defects. Int. J. Hydrogen Energy 2016, 41, 10776–10785. [Google Scholar] [CrossRef]
- Guo, J.-J.; Zhao, H.-Y.; Ai, L.-Y.; Wang, J.; Liu, Y. B12@Mg20Al12 core-shell molecule: A candidate for high-capacity hydrogen storage material. Int. J. Hydrogen Energy 2019, 44, 28235–28241. [Google Scholar] [CrossRef]
- Reddy, G.L.N.; Kumar, S. Hydrogen storage studies in Pd/Ti/Mg films. Int. J. Hydrogen Energy 2018, 43, 2840–2849. [Google Scholar] [CrossRef]
- Edalati, K.; Shao, H.; Emami, H.; Iwaoka, H.; Akiba, E.; Horita, Z. Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion. Int. J. Hydrogen Energy 2016, 41, 8917–8924. [Google Scholar] [CrossRef]
- Hongo, T.; Edalati, K.; Arita, M.; Matsuda, J.; Akiba, E.; Horita, Z. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 2015, 92, 46–54. [Google Scholar] [CrossRef]
- Baca, M.; Cendrowski, K.; Kukulka, W.; Bazarko, G.; Moszynski, D.; Michalkiewicz, B.; Kalenczuk, R.J.; Zielinska, B. A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials 2018, 8, 639. [Google Scholar] [CrossRef]
- Campesi, R.; Cuevas, F.; Gadiou, R.; Leroy, E.; Hirscher, M.; Vix-Guterl, C.; Latroche, M. Hydrogen storage properties of Pd nanoparticle/carbon template composites. Carbon 2008, 46, 206–214. [Google Scholar] [CrossRef]
- Deledda, S.; Borissova, A.; Poinsignon, C.; Botta, W.J.; Dornheim, M.; Klassen, T. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. J. Alloys Compd. 2005, 404–406, 409–412. [Google Scholar] [CrossRef]
- Fan, M.-Q.; Liu, S.-S.; Zhang, Y.; Zhang, J.; Sun, L.-X.; Xu, F. Superior hydrogen storage properties of MgH2–10 wt.% TiC composite. Energy 2010, 35, 3417–3421. [Google Scholar] [CrossRef]
- Xu, N.; Yuan, Z.; Ma, Z.; Guo, X.; Zhu, Y.; Zou, Y.; Zhang, Y. Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2. Int. J. Miner. Metall. Mater. 2022, 30, 54–62. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, J.; Xu, L.; Yao, Y.; Costa, B.F.O.; Domingos, V.F.; Ribeiro, E.S.; Shi, F.-N.; Zhou, K.; Su, J.; et al. Gelatin-assisted sol–gel derived TiO2 microspheres for hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 4945–4950. [Google Scholar] [CrossRef]
- Yin, C.; Qiu, S.; Wang, Y.; Wei, Q.; Peng, Z.; Xia, Y.; Zou, Y.; Xu, F.; Sun, L.; Chu, H. Promoted hydrogen storage properties of MgH2 by Ti3+ self-doped defect-mediated TiO2. J. Alloys Compd. 2023, 966, 171610. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Sun, K.; Li, S.; Zhou, J.; Liu, S.; Wei, H.; Liu, B.; Xie, L.; Li, B.; et al. Applications and theory investigation of two-dimensional boron nitride nanomaterials in energy catalysis and storage. EnergyChem 2023, 5, 100108. [Google Scholar] [CrossRef]
- Bader, N.; Ouederni, A. Optimization of biomass-based carbon materials for hydrogen storage. J. Energy Storage 2016, 5, 77–84. [Google Scholar] [CrossRef]
- Joseph, J.; Sivasankarapillai, V.S.; Nikazar, S.; Shanawaz, M.S.; Rahdar, A.; Lin, H.; Kyzas, G.Z. Borophene and Boron Fullerene Materials in Hydrogen Storage: Opportunities and Challenges. ChemSusChem 2020, 13, 3754–3765. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, S.; Xiao, X.; Chen, M.; Sun, C.; Yao, Z.; Hu, Z.; Chen, L. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 2019, 61, 540–549. [Google Scholar] [CrossRef]
- Ariharan, A.; Viswanathan, B.; Nandhakumar, V. Hydrogen storage on boron substituted carbon materials. Int. J. Hydrogen Energy 2016, 41, 3527–3536. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Zhang, F.; Yang, W. Ti-decorated graphitic-C3N4 monolayer: A promising material for hydrogen storage. Appl. Surf. Sci. 2016, 386, 247–254. [Google Scholar] [CrossRef]
- Wei, J.; Huang, C.; Wu, H.; Kan, E. High-capacity hydrogen storage in Li-adsorbed g-C3N4. Mater. Chem. Phys. 2016, 180, 440–444. [Google Scholar] [CrossRef]
- Pang, J.; Bachmatiuk, A.; Yin, Y.; Trzebicka, B.; Zhao, L.; Fu, L.; Mendes, R.G.; Gemming, T.; Liu, Z.; Rummeli, M.H. Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Adv. Energy Mater. 2018, 8, 1702093. [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Li, Y.; Wang, M.; Li, Z.; Mo, F.; Zhang, C.; Zhu, L.; Nan, R.; Wang, P. Promotion of electrochemical hydrogen storage performance based on two-dimensional black phosphorus nanosheets doped by cobalt. Mater. Lett. 2021, 303, 130422. [Google Scholar] [CrossRef]
- Li, Q.-F.; Wan, X.G.; Duan, C.-G.; Kuo, J.-L. Theoretical prediction of hydrogen storage on Li-decorated monolayer black phosphorus. J. Phys. D Appl. Phys. 2014, 47, 465302. [Google Scholar] [CrossRef]
Material | Theoretical Capacity (wt.%) | Desorption Temperature (°C) | Kinetics |
---|---|---|---|
MgH2 | 76 | 300–400 | Slow |
AlH3 | 10.1 | 150–200 | Fast |
LiAlH4 | 10.5 | 120–250 | Fast |
LiNH2 | 11.5 | 250–300 | Slow |
LiBH4 | 18.5 | 300–450 | Slow |
NaAlH4 | 7.4 | 180–200 | Moderate |
Material | Surface Areas (m2/g) | Pore Size (nm) | H2 Uptake (wt.%, 77 K/1 Bar) | H2 Uptake (wt.%, RT/100 Bar) |
---|---|---|---|---|
Activated carbon | 3000 | 0.5–2.0 | 1.5–2.0 | 0.5–0.8 |
Carbon nanotubes | 200–400 | 10–50 | 1.2–2.4 | 0.2–0.4 |
Graphene | 500–1200 | 0.5–10 | 1.0–1.6 | 0.1–0.3 |
MOF-5 | 3800 | 0.8 | 5.2 | 1.3 |
MOF-177 | 4500 | 1.1 | 7.5 | 0.6 |
COF-102 | 3620 | 1.2 | 7.2 | 1.5 |
COF-103 | 4210 | 0.9 | 7.0 | 1.2 |
Porous BN | 1900 | 1–10 | 2.6 | - |
Material | Synthesis Method | Surface Area | H2 Uptake (wt.%, 77 K/1 Bar) | H2 Uptake (wt.%, RT/100 Bar) |
---|---|---|---|---|
V2C | HF etching of V2AlC | 8 | 2.1 | 1.8 |
V2C(OH)2 | Alkalization of V2C | 15 | 3.5 | 2.6 |
V2C(ONa)2 | Sodiation of V2C | 23 | 4.2 | 3.3 |
Mo-doped V2C(OH)2 | Hf etching + Mo doping | 27 | 4.8 | 3.9 |
V4C3(OH)2 | HF etching of V4AlC3 | 19 | 3.8 | 3.0 |
Material | Synthesis Method | Surface Area (m2/g) | Pore Size (nm) | H2 Uptake (wt.% RT/60 Bar) |
---|---|---|---|---|
Mg2Al-LDH | Coprecipitation | 45 | 0.5–1.0 | 0.6 |
Mg2Al-LDH/GO | In situ growth on GO | 92 | 1.0–2.0 | 1.4 |
Mg2Al-LDH/CNT | In situ growth on CNT | 116 | 1.5–3.0 | 2.0 |
Ni2Al-LDH | Coprecipitation | 37 | 0.5–1.5 | 0.4 |
Ni2Al-LDH | Self-assembly | 156 | 2.0–4.0 | 2.4 |
Co2Al-LDH | Coprecipitation | 29 | 0.5–1.2 | 0.3 |
Co2Al-LDH/g-C3N4 | Electrostatic assembly | 103 | 1.2–2.5 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, Y.; Gao, L.; Liu, Y.; Ding, Z. Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage. Nanomaterials 2024, 14, 1036. https://doi.org/10.3390/nano14121036
Xu Y, Li Y, Gao L, Liu Y, Ding Z. Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage. Nanomaterials. 2024; 14(12):1036. https://doi.org/10.3390/nano14121036
Chicago/Turabian StyleXu, Yaohui, Yuting Li, Liangjuan Gao, Yitao Liu, and Zhao Ding. 2024. "Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage" Nanomaterials 14, no. 12: 1036. https://doi.org/10.3390/nano14121036
APA StyleXu, Y., Li, Y., Gao, L., Liu, Y., & Ding, Z. (2024). Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage. Nanomaterials, 14(12), 1036. https://doi.org/10.3390/nano14121036