Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater
Abstract
:1. Introduction
2. Characteristics and Toxicological Properties of Wastewater Containing Pb(II) and Cu(II)
2.1. The Toxicological Effects of Pb(II) and Cu(II)
2.2. Characteristics of Wastewater Containing Pb(II) and Cu(II)
3. Methods for the Treatment of Heavy Metal Pollution
4. Research Progress on Pb(II) and Cu(II) Adsorption
Adsorbent Type | Sample | SSA (m2/g) | pH | Adsorption Capacity (mg/g) | Selectivity | Cost | Regeneration | Recyclable | Ref. |
---|---|---|---|---|---|---|---|---|---|
Activated carbon | Poultry litter-based activated carbon | 403 | 5.0 | 195.804 | / | low | / | / | [55] |
Eucalyptus bark-based activated carbon | 1239.38 | 5.0 | 109.71 | / | low | / | / | [56] | |
Magnetized activated carbons | 699.9 | 6 | 253.2 | low | low | / | Yes | [57] | |
Carbon foam | 458.59 | 7 | 491 | / | low | / | / | [58] | |
Amine-functionalized nano-porous carbon | 157 | 6–8 | 161.41 | low | low | low | / | [59] | |
Magnetic pomelo peel biochar | / | 6 | 205.39 | high | low | / | Yes | [60] | |
CNTs | CNTs | / | 5 | 102.04 | / | high | / | / | [61] |
Multiwall CNTs | / | 3 | 8118 | / | high | / | / | [62] | |
CNT–steel slag composite | 49.85 | 6.5 | 427.26 | / | high | / | / | [63] | |
Graphene | Graphene nanosheets | 1000 | 4 | 22.42 | / | high | / | / | [64] |
GO | GO | / | 5 | 1119 | / | high | / | / | [65] |
GO | / | / | 120 | / | high | / | / | [66] | |
FGO | 120 | 7 | 1850 | / | high | / | / | [67] | |
Modified GO | EDTA-GO | 623 | 6.8 | 479 | / | high | / | / | [68] |
Polyethyleneimine-grafted GO | / | 6 | 64.94 | / | high | / | / | [69] | |
Dipyridylamine-GO | / | 4.94 | 369.749 | / | high | high | / | [70] | |
rGO/Poly(Acrylamide) | / | 6 | 1000 | / | high | / | / | [71] | |
GO-based nanocomposite | GO-MnFe2O4 | 196 | 5 | 673 | / | high | / | Yes | [72] |
3D graphene/δ-MnO2 | / | 6 | 643.62 | / | high | high | / | [73] | |
Fe3O4/SiO2-GO | / | 7 | 385.1 | / | high | high | Yes | [74] | |
Clay | Montmorillonite | / | 5.7 | 31.1 | / | low | / | / | [75] |
Kaolinite | 18.4 | 5 | 31.75 | / | low | / | / | [76] | |
Natural kaolin | 7.98 | 5 | 165.117 | / | low | / | / | [77] | |
Kaolinite | / | 5.5 | 2.37 | / | low | / | / | [78] | |
Kaolinite | 3.7 | 6.5 | 4.2 | / | low | / | / | [79] | |
Sodic montmorillonite | 93 | 5 | 68.5 | / | low | / | / | [80] | |
Zeolite | 16.3 | 6 | 106.61 | / | low | / | / | [81] | |
Zeolite | 473.54 | 6 | 15.96 | / | low | high | / | [82] | |
L-lysine-modified montmorillonite | / | 5.5 | 89.72 | / | low | / | / | [83] | |
Modified clay | Modified kaolinite | 10.2 | 6 | 20 | / | low | / | / | [79] |
Amino-modified attapulgite | / | 6 | 50.66 | / | low | / | / | [84] | |
Clay-based nanocomposite | Fe-Mg LDH@bentonite Surface | 154.83 | 7 | 1215.81 | high | low | / | / | [85] |
Polyamide-amine–magnetic halloysite nanotubes | / | 5.6 | 194.4 | / | high | high | / | [86] | |
Magnetic halloysite nanotubes/MnO2 | / | 6 | 59.9 | / | high | high | Yes | [50] | |
Halloysite/Fe3O4/polyethylene oxide/chitosan | 38.23 | 5 | 160 | / | high | high | Yes | [87] | |
Titanium hydroxyl-grafted silica nanosheets | 259 | 5.8–6.0 | 184 | high | high | high | / | [88] | |
SiO2/kaolinite/Fe2O3 | / | 6 | 166.67 | / | low | / | / | [89] | |
Tourmaline–montmorillonite composite | / | 6 | 303.21 | high | low | / | / | [90] | |
Aminopropyltriethoxysilane-modified magnetic attapulgite@chitosan | / | 6 | 625.34 | / | low | high | Yes | [91] | |
Nano zero-valent iron | g-C3N4-nZVI | / | 5.5 | 400 | / | high | high | Yes | [54] |
nZVI | / | 7 | 119 | / | high | / | Yes | [92] | |
nZVI | / | 6 | 199 | / | high | / | Yes | [93] | |
undried nZVI | / | 6 | 807.23 | / | high | / | Yes | [94] | |
ZVI nanocomposite | Phosphoric titanium dioxide-3nZVI | / | 6 | 303.03 | / | high | / | Yes | [95] |
Zeolite-supported nZVI | / | 6.5 | 85.37 | / | high | / | Yes | [96] | |
Other nanocomposite | Fe3O4-FeMoS4 | / | 5 | 190.75 | / | high | high | Yes | [97] |
Dithiocarbamate chitosan@sewage sludge-derived biochar | 53.16 | 5.5 | 228.69 | / | high | high | / | [98] | |
Fe3O4@3-aminopropyltriethoxysilane @ acrylic acid–co-crotonic acid | / | 6 | 78.8 | / | high | high | Yes | [99] | |
Mg/Fe LDH with Fe3O4-carbon spheres | 4.38 | 7 | 696.19 | / | high | high | Yes | [100] | |
MoS2 nanosheets. | / | 6 | 740 | high | high | high | / | [101] | |
Chitosan–cellulose-Fe(III) | / | 4 | 99.86 | / | high | high | Yes | [8] | |
PVA/chitosan nanofibers membranes | / | 6 | 266.12 | high | high | / | Yes | [102] | |
2-aminoterephtalic acid-modified Fe3O4@triamine-triethoxysilane | 114 | 5.7 | 205.2 | / | high | high | Yes | [103] | |
Titanate nanotubes | 272.31 | 5 | 546.48 | high | high | high | / | [104] | |
MOFs | Zr-MOF | 42.9 | 4 | 273.2 | high | high | high | / | [105] |
Amino-citric anhydride-MIL-53 | / | 5.8 | 390 | / | high | / | / | [106] | |
MOF-808-EDTA | 1173 | 313 | / | high | / | / | [52] | ||
ZIF-67 | 1289 | 6 | 1348.42 | / | high | / | / | [107] | |
MOF-545 | 2192 | 7 | 73 | high | high | high | / | [108] | |
Magnetic cellulose nanocrystal/Zn-BTC | 65.10 | 5.45 | 558.66 | high | high | high | Yes | [109] | |
Cu-MOFs/Fe3O4 | 35.4 | / | 219.00 | / | high | high | Yes | [110] | |
Melamine-MOFs | 371 | 5 | 122 | / | high | high | / | [111] | |
Thiourea-modified UiO-66-NH2 | 470 | / | 232 | / | high | / | / | [112] | |
ZIF-60 | / | 4 | 1905 | / | high | / | / | [32] |
Adsorbent Type | Sample | SSA (m2/g) | pH | Adsorption Capacity (mg/g) | Selectivity | Cost | Regeneration | Recyclable | Ref. |
---|---|---|---|---|---|---|---|---|---|
Activated carbon | Palm shell activated carbon | 6.3 | 30.72 | / | low | / | / | [113] | |
Chestnut shell activated carbon | 1319 | 5 | 100 | / | low | / | / | [114] | |
Grapeseed activated carbon | 916 | 5 | 48.78 | / | low | / | / | [114] | |
Eucalyptus bark-based activated carbon | 1239.38 | 5.0 | 27 | / | low | / | / | [56] | |
Carbon foam | 458.59 | 7 | 247 | / | low | / | / | [58] | |
Porous carbon | 157 | 7–8 | 46.88 | / | low | / | / | [59] | |
Magnetic pomelo peel biochar | / | 6 | 81.91 | high | low | / | Yes | [60] | |
Activated carbon-Na | 786 | 5 | 17.80 | / | low | / | / | [115] | |
Banana straw biochar | 13.30 | 6.5 | 66.23 | / | low | / | / | [116] | |
Hydroxyapatite-sludge-based biochar | / | 6 | 89.98 | / | low | / | / | [117] | |
CNTs | As-produced CNTs | 82.2 | 6 | 8.25 | / | / | / | / | [118] |
Multiwalled carbon nanotubes | / | 5 | 24.49 | / | / | / | / | [119] | |
NaOCl-modified CNTs | 94.9 | 6 | 47.39 | / | / | / | / | [118] | |
CNTs–steel slag composite | 49.85 | 6.5 | 132.79 | / | / | / | / | [63] | |
GO | GO | / | 5 | 46.6 | / | / | / | / | [120] |
GO | / | 3–7 | 294 | / | / | / | / | [65] | |
GO | / | 5.3 | 117.5 | / | / | / | / | [121] | |
GO-based nanocomposite | 3D graphene/δ-MnO2 | / | 6 | 228.46 | / | / | high | / | [73] |
Modified GO | Amino-modified magnetic GO with polyamidoamine dendrimer | / | 7.2 | 353.59 | / | / | / | / | [122] |
Magnetic chitosan–GO | 132.9 | 8 | 217.4 | / | / | / | Yes | [123] | |
Dipyridylamine-GO | / | 5 | 358.824 | / | / | / | / | [70] | |
PVP-rGO | / | 3.5 | 1689 | / | / | / | / | [124] | |
Peat | Peat | 5 | 14.3 | / | low | / | / | [125] | |
Fly ash | Mesoporous aluminosilicate | 704 | 4.4 | 221 | / | low | / | / | [126] |
Clay | kaolinite | / | 6 | 10.787 | / | low | / | / | [127] |
kaolinite | 12.57 | 5 | 44.66 | / | low | / | / | [128] | |
Modified kaolinite | 32.91 | 6.5–7.0 | 1.16 | / | low | / | / | [129] | |
Natural bentonite | / | 6 | 32.26 | low | high | / | [130] | ||
Na-montmorillonite | / | 5.6 | 33.3 | / | low | high | / | [131] | |
Modified Clay | Bentonite-NH2 | 27.1 | 5–6 | 45.8 | / | low | high | / | [132] |
Bentonite-COOH | 25.5 | 5–6 | 53.1 | / | low | high | / | [132] | |
Polyethylene oxide–chitosan–magnetic halloysite nanotubes | 38.23 | 7 | 150 | / | low | high | Yes | [87] | |
Acid-activated montmorillonite-illite | 251 | 4.15 | 26.09 | / | low | / | / | [133] | |
Clay-based nanocomposite | SiO2/kaolinite/Fe2O3 | / | 6 | 153.85 | / | low | / | / | [89] |
TiO2–acid-activated kaolinite | 32.98 | 7 | 0.169 | / | low | / | / | [134] | |
Other Nanocomposite | MCs@Mg/Fe-LDHs | 4.38 | 6.5 | 341.12 | high | / | high | Yes | [100] |
Goethite | 71.49 | 5.2 | 149.25 | / | low | / | Yes | [135] | |
Hematite | 24.82 | 5.2 | 84.46 | / | low | / | Yes | [135] | |
Fe3O4-FeMoS4 | / | 5 | 110 | / | / | high | Yes | [97] | |
Nanohydrated zirconium oxide in polymer exchangers D201 | / | 7 | 130 | high | / | high | [136] | ||
Magnetic ferrite nanoparticles | 26.78 | 8 | 124.80 | / | low | / | Yes | [137] | |
Zwitterion–chitosan bed | / | 6 | 123.50 | / | low | high | / | [138] | |
Hollow Fe3O4@polydopamine | 39.96 | 8 | 86.35 | / | / | high | Yes | [139] | |
Melamine-based dendrimer amines–SBA-15 | 293 | 5 | 126.2 | / | / | / | / | [140] | |
Mesoporous silica | / | 5.2 | 182.39 | / | / | / | Yes | [141] | |
Titanate nanotubes | 272.31 | 6 | 122.88 | high | low | high | / | [104] | |
Biomaterial | Tetrazole-bonded bagasse | / | 7 | 132.5 | high | low | high | / | [142] |
Caulerpa lentillifera | 0.044 | 6 | 5.61 | / | low | / | / | [143] | |
Hydroclathrus clathratus | / | 6.2 | 43.4 | / | low | / | / | [144] | |
Rosa petal waste biomass | / | 5 | 52.84 | / | low | / | / | [145] | |
MOFs | Fe3O4@ZIF-8 | 724.7 | 6 | 301.33 | high | / | high | Yes | [146] |
4.1. The Influence of Various Parameters on Adsorption Properties
4.2. Regeneration
4.3. Carbon-Based Nanomaterials
4.4. Clay
4.5. Nano Zero-Valent Iron (nZVI)
4.6. Nanocomposite
4.7. MOFs
4.8. Adsorption Column
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.-Z.; Shi, Y.-J.; Hu, K.-H. Preparation of Molybdenum Disulfide with Different Nanostructures and Its Adsorption Performance for Copper (II) Ion in Water. Nanomaterials 2023, 13, 1194. [Google Scholar] [CrossRef]
- Fiyadh, S.S.; Alardhi, S.M.; Al Omar, M.; Aljumaily, M.M.; Al Saadi, M.A.; Fayaed, S.S.; Ahmed, S.N.; Salman, A.D.; Abdalsalm, A.H.; Jabbar, N.M.; et al. A Comprehensive Review on Modelling the Adsorption Process for Heavy Metal Removal from Waste Water Using Artificial Neural Network Technique. Heliyon 2023, 9, e15455. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, Z.; Jiang, J.; Liu, Y.; Wang, X.; Li, W.; Zheng, G. One-Step Preparation of PVDF/GO Electrospun Nanofibrous Membrane for High-Efficient Adsorption of Cr(VI). Nanomaterials 2022, 12, 3115. [Google Scholar] [CrossRef]
- Lv, X.; Zhang, Y.; Wang, X.; Hu, L.; Shi, C. Multilayer Graphene Oxide Supported ZIF-8 for Efficient Removal of Copper Ions. Nanomaterials 2022, 12, 3162. [Google Scholar] [CrossRef]
- Li, J.; Fan, M.; Yuan, Z.; Liu, F.; Li, M. One-Pot Synthesis of Lamellar Fe-Cu Bimetal-Decorated Reduced Graphene Oxide and Its Enhanced Removal of Cr(VI) from Water. Nanomaterials 2023, 13, 2745. [Google Scholar] [CrossRef]
- Aziam, R.; Stefan, D.S.; Nouaa, S.; Chiban, M.; Boșomoiu, M. Adsorption of Metal Ions from Single and Binary Aqueous Systems on Bio-Nanocomposite, Alginate-Clay. Nanomaterials 2024, 14, 362. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Bing, H.; Peng, J.; Dong, F.; Gao, J.; Arhonditsis, G.B. Characterizing the River Water Quality in China: Recent Progress and on-Going Challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef]
- Khalid, A.M.; Hossain, M.S.; Khalil, N.A.; Zulkifli, M.; Arafath, M.A.; Shaharun, M.S.; Ayub, R.; Ahmad Yahaya, A.N.; Ismail, N. Adsorptive Elimination of Heavy Metals from Aqueous Solution Using Magnetic Chitosan/Cellulose-Fe(III) Composite as a Bio-Sorbent. Nanomaterials 2023, 13, 1595. [Google Scholar] [CrossRef]
- Wu, H.; Yang, F.; Li, H.; Li, Q.; Zhang, F.; Ba, Y.; Cui, L.; Sun, L.; Lv, T.; Wang, N.; et al. Heavy Metal Pollution and Health Risk Assessment of Agricultural Soil near a Smelter in an Industrial City in China. Int. J. Environ. Health Res. 2020, 30, 174–186. [Google Scholar] [CrossRef]
- Liu, G.; Yu, Z.; Liu, X.; Xue, W.; Dong, L.; Liu, Y. Aging Process of Cadmium, Copper, and Lead under Different Temperatures and Water Contents in Two Typical Soils of China. J. Chem. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The Spatiotemporal Variation in Heavy Metals in China’s Farmland Soil over the Past 20 years: A Meta-Analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, W.; Xu, H.; Cui, X.; Li, J.; Chen, J.; Zheng, B. Characterizations of Heavy Metal Contamination, Microbial Community, and Resistance Genes in a Tailing of the Largest Copper Mine in China. Environ. Pollut. 2021, 280, 116947. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Liu, J.; Wu, J.; Feng, W.; Li, X. Ecological Risk Assessment of Heavy Metals in Water Bodies around Typical Copper Mines in China. Int. J. Environ. Res. Public Health 2020, 17, 4315. [Google Scholar] [CrossRef]
- Ogamba, E.N.; Charles, E.E.; Izah, S.C. Distributions, Pollution Evaluation and Health Risk of Selected Heavy Metal in Surface Water of Taylor Creek, Bayelsa State, Nigeria. Toxicol. Environ. Health Sci. 2021, 13, 109–121. [Google Scholar] [CrossRef]
- Paul, D. Research on Heavy Metal Pollution of River Ganga: A Review. Ann. Agrar. Sci. 2017, 15, 278–286. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kumar, R.; Bhardwaj, R.; Kumar Thukral, A.; Rodrigo-Comino, J. Assessment of Heavy-Metal Pollution in Three Different Indian Water Bodies by Combination of Multivariate Analysis and Water Pollution Indices. Hum. Ecol. Risk Assess. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M.; Citak, D.; Soylak, M. Adsorption Characteristics of Cu(II) and Pb(II) onto Expanded Perlite from Aqueous Solution. J. Hazard. Mater. 2007, 148, 387–394. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Li, Y.; Zhang, Y.; Ma, X.; Ye, Z. Study on Adsorption Mechanism of Pb(II) and Cu(II) in Aqueous Solution Using PS-EDTA Resin. Chem. Eng. J. 2010, 163, 364–372. [Google Scholar] [CrossRef]
- Semerjian, L. Removal of Heavy Metals (Cu, Pb) from Aqueous Solutions Using Pine (Pinus Halepensis) Sawdust: Equilibrium, Kinetic, and Thermodynamic Studies. Environ. Technol. Innov. 2018, 12, 91–103. [Google Scholar] [CrossRef]
- Wang, S.; Terdkiatburana, T.; Tadé, M.O. Adsorption of Cu(II), Pb(II) and Humic Acid on Natural Zeolite Tuff in Single and Binary Systems. Sep. Purif. Technol. 2008, 62, 64–70. [Google Scholar] [CrossRef]
- Xu, C.; Shi, S.; Wang, X.; Zhou, H.; Wang, L.; Zhu, L.; Zhang, G.; Xu, D. Electrospun SiO2-MgO Hybrid Fibers for Heavy Metal Removal: Characterization and Adsorption Study of Pb(II) and Cu(II). J. Hazard. Mater. 2020, 381, 120974. [Google Scholar] [CrossRef]
- Purwiyanto, A.I.S.; Suteja, Y.; Trisno; Ningrum, P.S.; Putri, W.A.E.; Rozirwan; Agustriani, F.; Fauziyah; Cordova, M.R.; Koropitan, A.F. Concentration and Adsorption of Pb and Cu in Microplastics: Case Study in Aquatic Environment. Mar. Pollut. Bull. 2020, 158, 111380. [Google Scholar] [CrossRef]
- Lee, J.Y.; Chen, C.H.; Cheng, S.; Li, H.Y. Adsorption of Pb(II) and Cu(II) Metal Ions on Functionalized Large-Pore Mesoporous Silica. Int. J. Environ. Sci. Technol. 2016, 13, 65–76. [Google Scholar] [CrossRef]
- Naat, J.N.; Neolaka, Y.A.B.; Lapailaka, T.; Rachmat Triandi, T.; Sabarudin, A.; Darmokoesoemo, H.; Kusuma, H.S. Adsorption of Cu(II) and Pb(II) Using Silica@mercapto (Hs@m) Hybrid Adsorbent Synthesized from Silica of Takari Sand: Optimization of Parameters and Kinetics. Rasayan J. Chem. 2021, 14, 550–560. [Google Scholar] [CrossRef]
- Machida, M.; Aikawa, M.; Tatsumoto, H. Prediction of Simultaneous Adsorption of Cu(II) and Pb(II) onto Activated Carbon by Conventional Langmuir Type Equations. J. Hazard. Mater. 2005, 120, 271–275. [Google Scholar] [CrossRef]
- Ahmad, A.; Rafatullah, M.; Sulaiman, O.; Ibrahim, M.H.; Chii, Y.Y.; Siddique, B.M. Removal of Cu(II) and Pb(II) Ions from Aqueous Solutions by Adsorption on Sawdust of Meranti Wood. Desalination 2009, 247, 636–646. [Google Scholar] [CrossRef]
- Canfield, R.L.; Henderson, C.R.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual Impairment in Children with Blood Lead Concentrations below 10 Μg per Deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, W.; Zhao, T.-L.; Liu, M.; Yao, Q.-Z.; Zhou, G.-T. Efficient Removal of Congo Red, Methylene Blue and Pb(II) by Hydrochar–MgAlLDH Nanocomposite: Synthesis, Performance and Mechanism. Nanomaterials 2023, 13, 1145. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Ansari, M.A.; Nadeem, A.; Attia, S.M.; Bakheet, S.A.; Al-Mazroua, H.A.; Aldossari, A.A.; Almutairi, M.M.; Albekairi, T.H.; Hussein, M.H.; et al. Cadmium Exposure Is Associated with Behavioral Deficits and Neuroimmune Dysfunction in BTBR T+ Itpr3tf/J Mice. Int. J. Mol. Sci. 2023, 24, 6575. [Google Scholar] [CrossRef]
- Ismail, U.M.; Onaizi, S.A.; Vohra, M.S. Aqueous Pb(II) Removal Using ZIF-60: Adsorption Studies, Response Surface Methodology and Machine Learning Predictions. Nanomaterials 2023, 13, 1402. [Google Scholar] [CrossRef]
- Gargouri, M.; Akrouti, A.; Magné, C.; El Feki, A.; Soussi, A. Protective Effects of Spirulina against Hemato-Biochemical Alterations, Nephrotoxicity, and DNA Damage upon Lead Exposition. Hum. Exp. Toxicol. 2020, 39, 855–869. [Google Scholar] [CrossRef]
- Tamegart, L.; Abbaoui, A.; El Khiat, A.; Bouyatas, M.M.; Gamrani, H. Lead (Pb) Exposure Induces Physiological Alterations in the Serotoninergic and Vasopressin Systems Causing Anxiogenic-like Behavior in Meriones Shawi: Assessment of BDMC as a Neuroprotective Compound for Pb-Neurotoxicity and Kidney Damages. J. Trace Elem. Med. Biol. 2021, 65, 126722. [Google Scholar] [CrossRef]
- Salama, S.A.; Arab, H.H.; Maghrabi, I.A.; Hassan, M.H.; AlSaeed, M.S. Gamma-Glutamyl Cysteine Attenuates Tissue Damage and Enhances Tissue Regeneration in a Rat Model of Lead-Induced Nephrotoxicity. Biol. Trace Elem. Res. 2016, 173, 96–107. [Google Scholar] [CrossRef]
- Long, M.; Liu, Y.; Cao, Y.; Wang, N.; Dang, M.; He, J. Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway. Nutrients 2016, 8, 656. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Šrut, M.; Menke, S.; Höckner, M.; Sommer, S. Earthworms and Cadmium—Heavy Metal Resistant Gut Bacteria as Indicators for Heavy Metal Pollution in Soils? Ecotoxicol. Environ. Saf. 2019, 171, 843–853. [Google Scholar] [CrossRef]
- Marini, E.; De Bernardi, A.; Tagliabue, F.; Casucci, C.; Tiano, L.; Marcheggiani, F.; Vaccari, F.; Taskin, E.; Puglisi, E.; Brunetti, G.; et al. Copper Toxicity on Eisenia Fetida in a Vineyard Soil: A Combined Study with Standard Tests, Genotoxicity Assessment and Gut Metagenomic Analysis. Environ. Sci. Pollut. Res. 2024, 31, 13141–13154. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Liu, H.; Li, J.-Y.; Bao, Y.-B.; Yang, J.; Li, L.; Zhao, Z.-Y.; Zheng, Q.-X.; Xiang, P. Road Dust Exposure and Human Corneal Damage in a Plateau High Geological Background Provincial Capital City: Spatial Distribution, Sources, Bioaccessibility, and Cytotoxicity of Dust Heavy Metals. Sci. Total Environ. 2024, 912, 169140. [Google Scholar] [CrossRef]
- Lacin, O.; Bayrak, B.; Korkut, O.; Sayan, E. Modeling of Adsorption and Ultrasonic Desorption of Cadmium(II) and Zinc(II) on Local Bentonite. J. Colloid Interface Sci. 2005, 292, 330–335. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Uan, J.-Y. The Effect of Lithium Ion Leaching from Calcined Li–Al Hydrotalcite on the Rapid Removal of Ni2+/Cu2+ from Contaminated Aqueous Solutions. Nanomaterials 2023, 13, 1477. [Google Scholar] [CrossRef]
- Drozdova, J.; Raclavska, H.; Skrobankova, H. A Survey of Heavy Metals in Municipal Wastewater in Combined Sewer Systems during Wet and Dry Weather Periods. Urban Water J. 2015, 12, 131–144. [Google Scholar] [CrossRef]
- Taghipour, H.; Mosaferi, M.; Pourakbar, M.; Armanfar, F. Heavy Metals Concentrations in Groundwater Used for Irrigation. Health Promot. Perspect. 2012, 2, 205–210. [Google Scholar]
- Al-Jaboobi, M.; Zouahri, A.; Tijane, M.; El Housni, A.; Mennane, Z.; Yachou, H.; Bouksaim, M. Evaluation of Heavy Metals Pollution in Groundwater, Soil and Some Vegetables Irrigated with Wastewater in the Skhirat Region “Morocco”. J. Mater. Environ. Sci. 2014, 5, 961–966. [Google Scholar]
- Guan, W.; Zhang, B.; Tian, S.; Zhao, X. The Synergism between Electro-Fenton and Electrocoagulation Process to Remove Cu-EDTA. Appl. Catal. B Environ. 2018, 227, 252–257. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, L.; Ge, X.; Zhang, Y.; Liu, Y.; Wang, J. A Mild One-Step Method to Fabricate Graphene Oxide Cross-Linked with Dopamine/Polyethyleneimine (GO@DA/PEI) Composite Membranes with an Ultrahigh Flux for Heavy Metal Ion Removal. Sep. Purif. Technol. 2024, 339, 126618. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, P.; Ni, W.; Zhang, S.; Li, S.; Deng, W.; Hu, W.; Li, J.; Pei, F.; Du, L.; et al. A Review of Solid Wastes-Based Stabilizers for Remediating Heavy Metals Co-Contaminated Soil: Applications and Challenges. Sci. Total Environ. 2024, 920, 170667. [Google Scholar] [CrossRef]
- Alyüz, B.; Veli, S. Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins. J. Hazard. Mater. 2009, 167, 482–488. [Google Scholar] [CrossRef]
- Afzali, D.; Fayazi, M. Deposition of MnO2 Nanoparticles on the Magnetic Halloysite Nanotubes by Hydrothermal Method for Lead(II) Removal from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2016, 63, 421–429. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, H.; Zhang, Y.; Kang, C.; Chen, S.; Song, L.; Liu, D.; Zhong, C. A Versatile MOF-Based Trap for Heavy Metal Ion Capture and Dispersion. Nat. Commun. 2018, 9, 187. [Google Scholar] [CrossRef]
- HMTShirazi, R.; Mohammadi, T.; Asadi, A.A. Incorporation of Amine-Grafted Halloysite Nanotube to Electrospun Nanofibrous Membranes of Chitosan/Poly (Vinyl Alcohol) for Cd (II) and Pb(II) Removal. Appl. Clay Sci. 2022, 220, 106460. [Google Scholar] [CrossRef]
- Tang, C.; Ling, L.; Zhang, W. xian Pb(II) Deposition-Reduction-Growth onto Iron Nanoparticles Induced by Graphitic Carbon Nitride. Chem. Eng. J. 2020, 387, 124088. [Google Scholar] [CrossRef]
- Guo, M.; Qiu, G.; Song, W. Poultry Litter-Based Activated Carbon for Removing Heavy Metal Ions in Water. Waste Manag. 2010, 30, 308–315. [Google Scholar] [CrossRef]
- Kongsuwan, A.; Patnukao, P.; Pavasant, P. Binary Component Sorption of Cu(II) and Pb(II) with Activated Carbon from Eucalyptus Camaldulensis Dehn Bark. J. Ind. Eng. Chem. 2009, 15, 465–470. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by Magnetic Activated Carbon and Its Mechanism. Sci. Total Environ. 2021, 757, 143910. [Google Scholar] [CrossRef]
- Lee, C.G.; Jeon, J.W.; Hwang, M.J.; Ahn, K.H.; Park, C.; Choi, J.W.; Lee, S.H. Lead and Copper Removal from Aqueous Solutions Using Carbon Foam Derived from Phenol Resin. Chemosphere 2015, 130, 59–65. [Google Scholar] [CrossRef]
- Sayar, O.; Amini, M.M.; Moghadamzadeh, H.; Sadeghi, O.; Khan, S.J. Removal of Heavy Metals from Industrial Wastewaters Using Amine-Functionalized Nanoporous Carbon as a Novel Sorbent. Microchim. Acta 2013, 180, 227–233. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water Air Soil Pollut. 2020, 231, 404. [Google Scholar] [CrossRef]
- Kabbashi, N.A.; Atieh, M.A.; Al-Mamun, A.; Mirghami, M.E.; Alam, M.D.Z.; Yahya, N. Kinetic Adsorption of Application of Carbon Nanotubes for Pb(II) Removal from Aqueous Solution. J. Environ. Sci. 2009, 21, 539–544. [Google Scholar] [CrossRef]
- Alizadeh, B.; Ghorbani, M.; Salehi, M.A. Application of Polyrhodanine Modified Multi-Walled Carbon Nanotubes for High Efficiency Removal of Pb(II) from Aqueous Solution. J. Mol. Liq. 2016, 220, 142–149. [Google Scholar] [CrossRef]
- Yang, P.; Li, F.; Wang, B.; Niu, Y.; Wei, J.; Yu, Q. In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution. Nanomaterials 2022, 12, 1199. [Google Scholar] [CrossRef]
- Huang, Z.H.; Zheng, X.; Lv, W.; Wang, M.; Yang, Q.H.; Kang, F. Adsorption of Lead(II) Ions from Aqueous Solution on Low-Temperature Exfoliated Graphene Nanosheets. Langmuir 2011, 27, 7558–7562. [Google Scholar] [CrossRef]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of Divalent Metal Ions from Aqueous Solutions Using Graphene Oxide. Dalton. Trans. 2013, 42, 5682. [Google Scholar] [CrossRef]
- Raghubanshi, H.; Ngobeni, S.M.; Osikoya, A.O.; Shooto, N.D.; Dikio, C.W.; Naidoo, E.B.; Dikio, E.D.; Pandey, R.K.; Prakash, R. Synthesis of Graphene Oxide and Its Application for the Adsorption of Pb+2 from Aqueous Solution. J. Ind. Eng. Chem. 2017, 47, 169–178. [Google Scholar] [CrossRef]
- Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb(Ii) Ions from Aqueous Solutions on Few-Layered Graphene Oxide Nanosheets. Dalton. Trans. 2011, 40, 10945–10952. [Google Scholar] [CrossRef]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Saleh, T.A. Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide. Nanomaterials 2023, 13, 1078. [Google Scholar] [CrossRef]
- Zare-Dorabei, R.; Ferdowsi, S.M.; Barzin, A.; Tadjarodi, A. Highly Efficient Simultaneous Ultrasonic-Assisted Adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) Ions from Aqueous Solutions by Graphene Oxide Modified with 2,2′-Dipyridylamine: Central Composite Design Optimization. Ultrason. Sonochem. 2016, 32, 265–276. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of Reduced Graphene Oxide/Poly(Acrylamide) Nanocomposite and Its Adsorption of Pb(II) and Methylene Blue. Langmuir 2013, 29, 10727–10736. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide-MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Liu, J.; Ge, X.; Ye, X.; Wang, G.; Zhang, H.; Zhou, H.; Zhang, Y.; Zhao, H. 3D Graphene/δ-MnO2 Aerogels for Highly Efficient and Reversible Removal of Heavy Metal Ions. J. Mater. Chem. A 2016, 4, 1970–1979. [Google Scholar] [CrossRef]
- Bao, S.; Yang, W.; Wang, Y.; Yu, Y.; Sun, Y. One-Pot Synthesis of Magnetic Graphene Oxide Composites as an e Ffi Cient and Recoverable Adsorbent for Cd(II) and Pb(II) Removal from Aqueous Solution. J. Hazard. Mater. 2020, 381, 120914. [Google Scholar] [CrossRef]
- Sen Gupta, S.; Bhattacharyya, K.G. Immobilization of Pb(II), Cd(II) and Ni(II) Ions on Kaolinite and Montmorillonite Surfaces from Aqueous Medium. J. Environ. Manag. 2008, 87, 46–58. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M.; Citak, D.; Soylak, M. Equilibrium, Kinetic and Thermodynamic Studies of Adsorption of Pb(II) from Aqueous Solution onto Turkish Kaolinite Clay. J. Hazard. Mater. 2007, 149, 283–291. [Google Scholar] [CrossRef]
- Tang, Q.; Tang, X.; Li, Z.; Chen, Y.; Kou, N.; Sun, Z. Adsorption and Desorption Behaviour of Pb(II) on a Natural Kaolin: Equilibrium, Kinetic and Thermodynamic Studies. J. Chem. Technol. Biotechnol. 2009, 84, 1371–1380. [Google Scholar] [CrossRef]
- Ghogomu, J. Removal of Pb(II) Ions from Aqueous Solutions by Kaolinite and Metakaolinite Materials. Br. J. Appl. Sci. Technol. 2013, 3, 942–961. [Google Scholar] [CrossRef]
- Jiang, M.Q.; Wang, Q.P.; Jin, X.Y.; Chen, Z.L. Removal of Pb(II) from Aqueous Solution Using Modified and Unmodified Kaolinite Clay. J. Hazard. Mater. 2009, 170, 332–339. [Google Scholar] [CrossRef]
- Lounis, Z.; Saddouki, S.; Djafri, F. Removal of Pb2+ Ions in Aqueous Phase by a Sodic Montmorillonite. J. Anal. Sci. Technol. 2012, 3, 104–112. [Google Scholar] [CrossRef]
- Faghihian, H.; Nejati-Yazdinejad, M. A Comparative Study of the Sorption of Cd(II) and Pb(II) Ions from Aqueous Solution by Local Bentonite and Clinoptilolite. Adsorpt. Sci. Technol. 2009, 27, 107–155. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Lyu, X.; ElDeeb, A.B. Synthesized Zeolite Based on Egyptian Boiler Ash Residue and Kaolin for the Effective Removal of Heavy Metal Ions from Industrial Wastewater. Nanomaterials 2023, 13, 1091. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xia, M.; Chu, Y.; Khan, M.A.; Lei, W.; Wang, F.; Muhmood, T.; Wang, A. Adsorption and Desorption of Pb(II) on l-Lysine Modified Montmorillonite and the Simulation of Interlayer Structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Wang, J.; Tang, Y.; Zhang, Z. Selective Adsorption of Pb2+ and Cu2+ on Amino-Modified Attapulgite: Kinetic, Thermal Dynamic and DFT Studies. J. Hazard. Mater. 2021, 404, 124140. [Google Scholar] [CrossRef]
- Guan, X.; Yuan, X.; Zhao, Y.; Bai, J.; Li, Y.; Cao, Y.; Chen, Y.; Xiong, T. Adsorption Behaviors and Mechanisms of Fe/Mg Layered Double Hydroxide Loaded on Bentonite on Cd (II) and Pb (II) Removal. J. Colloid Interface Sci. 2022, 612, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Dai, X.; Chen, L.; Cui, Y.; Qiang, C.; Sun, Q.; Dai, J. Thiol-Yne Click Synthesis of Polyamide-Amine Dendritic Magnetic Halloysite Nanotubes for the Efficient Removal of Pb(II). ACS Sustain. Chem. Eng. 2020, 8, 771–781. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Lv, Y.; Liu, J.; Zhang, D.; Shao, Z. Halloysite Nanotubes and Fe3O4 Nanoparticles Enhanced Adsorption Removal of Heavy Metal Using Electrospun Membranes. Appl. Clay Sci. 2018, 161, 225–234. [Google Scholar] [CrossRef]
- Yan, Z.; Fu, L.; Yang, H. Functionalized 2D Clay Derivative: Hybrid Nanosheets with Unique Lead Sorption Behaviors and Interface Structure. Adv. Mater. Interfaces 2018, 5, 1700934. [Google Scholar] [CrossRef]
- Awwad, A.M.; Amer, M.A. Adsorption of Pb(II), Cd(II), and Cu(II) Ions onto SiO2/Kaolinite/Fe2O3 Composites: Modeling and Thermodynamics Properties. Chem. Int. 2022, 8, 95–100. [Google Scholar]
- Chen, Y.; Wang, S.; Li, Y.; Liu, Y.; Chen, Y.; Wu, Y.; Zhang, J.; Li, H.; Peng, Z.; Xu, R.; et al. Adsorption of Pb(II) by Tourmaline-Montmorillonite Composite in Aqueous Phase. J. Colloid Interface Sci. 2020, 575, 367–376. [Google Scholar] [CrossRef]
- Liang, X.X.; Ouyang, X.-K.; Wang, S.; Yang, L.-Y.; Huang, F.; Ji, C.; Chen, X. Efficient Adsorption of Pb(II) from Aqueous Solutions Using Aminopropyltriethoxysilane-Modified Magnetic Attapulgite@chitosan (APTS-Fe3O4/APT@CS) Composite Hydrogel Beads. Int. J. Biol. Macromol. 2019, 137, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Zhang, W.X. Sequestration of Metal Cations with Zerovalent Iron Nanoparticles—A Study with High Resolution x-Ray Photoelectron Spectroscopy (HR-XPS). J. Phys. Chem. C 2007, 111, 6939–6946. [Google Scholar] [CrossRef]
- Wang, W.; Hua, Y.; Li, S.; Yan, W.; Zhang, W. Removal of Pb(II) and Zn(II) Using Lime and Nanoscale Zero-Valent Iron (NZVI): A Comparative Study. Chem. Eng. J. 2016, 304, 79–88. [Google Scholar] [CrossRef]
- Dongsheng, Z.; Wenqiang, G.; Guozhang, C.; Shuai, L.; Weizhou, J.; Youzhi, L. Removal of Heavy Metal Lead(II) Using Nanoscale Zero-Valent Iron with Different Preservation Methods. Adv. Powder Technol. 2019, 30, 581–589. [Google Scholar] [CrossRef]
- Ren, J.; Zheng, L.; Su, Y.; Meng, P.; Zhou, Q.; Zeng, H.; Zhang, T.; Yu, H. Competitive Adsorption of Cd(II), Pb(II) and Cu(II) Ions from Acid Mine Drainage with Zero-Valent Iron/Phosphoric Titanium Dioxide: XPS Qualitative Analyses and DFT Quantitative Calculations. Chem. Eng. J. 2022, 445, 136778. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Meng, J.; Liu, X.; Xu, J.; Wang, F.; Brookes, P. Zeolite-Supported Nanoscale Zero-Valent Iron: New Findings on Simultaneous Adsorption of Cd(II), Pb(II), and As(III) in Aqueous Solution and Soil. J. Hazard. Mater. 2018, 344, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, E.S.; Dashtian, K.; Ghaedi, M. Fe3O4-FeMoS4: Promise Magnetite LDH-Based Adsorbent for Simultaneous Removal of Pb (II), Cd (II), and Cu (II) Heavy Metal Ions. J. Hazard. Mater. 2021, 410, 124560. [Google Scholar] [CrossRef]
- Ifthikar, J.; Shahib, I.I.; Sellaoui, L.; Jawad, A.; Zhao, M.; Chen, Z.; Chen, Z. PH Tunable Anionic and Cationic Heavy Metal Reduction Coupled Adsorption by Thiol Cross-Linked Composite: Physicochemical Interpretations and Fixed-Bed Column Mathematical Model Study. Chem. Eng. J. 2020, 401, 126041. [Google Scholar] [CrossRef]
- Ge, F.; Li, M.; Ye, H.; Zhao, B. Effective Removal of Heavy Metal Ions Cd2+, Zn2+, Pb2+, Cu2+ from Aqueous Solution by Polymer-Modified Magnetic Nanoparticles. J. Hazard. Mater. 2012, 211–212, 366–372. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, X.; Wu, Z.; Zeng, G.; Jiang, L.; Peng, X.; Li, H. Adsorption Behavior and Mechanism of Mg/Fe Layered Double Hydroxide with Fe3O4-Carbon Spheres on the Removal of Pb(II) and Cu(II). J. Colloid Interface Sci. 2019, 536, 440–455. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Q.; Sim, A.; Yu, J.; Duan, Y.; Poon, S.; Liu, B.; Han, Q.; Urban, J.J.; Sedlak, D.; et al. Superselective Removal of Lead from Water by Two-Dimensional MoS2Nanosheets and Layer-Stacked Membranes. Environ. Sci. Technol. 2020, 54, 12602–12611. [Google Scholar] [CrossRef]
- Rezaul, M.; Omer, M.; Alharth, N.H.; Alharbi, H.F. Composite Nanofibers Membranes of Poly (Vinyl Alcohol)/Chitosan for Selective Lead (II) and Cadmium (II) Ions Removal from Wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar]
- Abdullah, A.; Naushad, M.; Alothman, Z.A.; Alsuhybani, M. Excellent Adsorptive Performance of a New Nanocomposite for Removal of Toxic Pb (II) from Aqueous Environment: Adsorption Mechanism and Modeling Analysis. J. Hazard. Mater. 2020, 389, 121896. [Google Scholar]
- Liu, W.; Wang, T.; Borthwick, A.G.L.; Wang, Y.; Yin, X.; Li, X.; Ni, J. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto Titanate Nanotubes: Competition and Effect of Inorganic Ions. Sci. Total Environ. 2013, 456–457, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiong, C.; He, Y.; Yang, C.; Li, X.; Zheng, J.; Wang, S. Facile Preparation of Magnetic Zr-MOF for Adsorption of Pb(II) and Cr(VI) from Water: Adsorption Characteristics and Mechanisms. Chem. Eng. J. 2021, 415, 128923. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Khan, M.A.; Siddiqui, M.R.; Alothman, Z.A. Development of Citric Anhydride Anchored Mesoporous MOF through Post Synthesis Modification to Sequester Potentially Toxic Lead (II) from Water. Microporous Mesoporous Mater. 2018, 261, 198–206. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy Metal Ion Removal of Wastewater by Zeolite-Imidazolate Frameworks. Sep. Purif. Technol. 2018, 194, 462–469. [Google Scholar] [CrossRef]
- Tokalıoğlu, Ş.; Yavuz, E.; Demir, S.; Patat, Ş. Zirconium-Based Highly Porous Metal-Organic Framework (MOF-545) as an Efficient Adsorbent for Vortex Assisted-Solid Phase Extraction of Lead from Cereal, Beverage and Water Samples. Food Chem. 2017, 237, 707–715. [Google Scholar] [CrossRef]
- Wang, N.; Ouyang, X.-K.; Yang, L.-Y.; Omer, A.M. Fabrication of a Magnetic Cellulose Nanocrystal/Metal–Organic Framework Composite for Removal of Pb(II) from Water. ACS Sustain. Chem. Eng. 2017, 5, 10447–10458. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, C.; Guan, H.; Li, L.; Fan, L.; Wang, Y.; Liu, L.; Meng, Q.; Zhang, R. Magnetic Metal Organic Frameworks (MOFs) Composite for Removal of Lead and Malachite Green in Wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 382–390. [Google Scholar] [CrossRef]
- Yin, N.; Wang, K.; Xia, Y.; Li, Z. Novel Melamine Modified Metal-Organic Frameworks for Remarkably High Removal of Heavy Metal Pb (II). Desalination 2018, 430, 120–127. [Google Scholar] [CrossRef]
- Saleem, H.; Rafique, U.; Davies, R.P. Investigations on Post-Synthetically Modified UiO-66-NH2 for the Adsorptive Removal of Heavy Metal Ions from Aqueous Solution. Microporous Mesoporous Mater. 2016, 221, 238–244. [Google Scholar] [CrossRef]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M. Study on Palm Shell Activated Carbon Adsorption Capacity to Remove Copper Ions from Aqueous Solutions. Desalination 2010, 262, 94–98. [Google Scholar] [CrossRef]
- Özçimen, D.; Ersoy-Meriçboyu, A. Removal of Copper from Aqueous Solutions by Adsorption onto Chestnut Shell and Grapeseed Activated Carbons. J. Hazard. Mater. 2009, 168, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A.; Muñiz-Valencia, R. Preparation of Activated Carbons from Pecan Nutshell and Their Application in the Antagonistic Adsorption of Heavy Metal Ions. J. Mol. Liq. 2017, 230, 686–695. [Google Scholar] [CrossRef]
- Li, A.Y.; Deng, H.; Jiang, Y.H.; Ye, C.H.; Yu, B.G.; Zhou, X.L.; Ma, A.Y. Superefficient Removal of Heavy Metals from Wastewater by Mg-Loaded Biochars: Adsorption Characteristics and Removal Mechanisms. Langmuir 2020, 36, 9160–9174. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, M.; Li, Y.; Liu, Y.; Chen, Y.; Li, H.; Li, L.; Xu, F.; Jiang, H.; Chen, L. Hydroxyapatite Modified Sludge-Based Biochar for the Adsorption of Cu2+ and Cd2+: Adsorption Behavior and Mechanisms. Bioresour. Technol. 2021, 321, 124413. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H. Studies of the Equilibrium and Thermodynamics of the Adsorption of Cu2+ onto As-Produced and Modified Carbon Nanotubes. J. Colloid Interface Sci. 2007, 311, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive Adsorption of Pb2+, Cu2+ and Cd2+ Ions from Aqueous Solutions by Multiwalled Carbon Nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar]
- Yang, S.T.; Chang, Y.; Wang, H.; Liu, G.; Chen, S.; Wang, Y.; Liu, Y.; Cao, A. Folding/Aggregation of Graphene Oxide and Its Application in Cu2+ Removal. J. Colloid Interface Sci. 2010, 351, 122–127. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Y.; Zhou, H.; Ye, T.; Huang, Z.; Liu, R.; Kuang, Y. Highly Efficient Removal of Cu(II) from Aqueous Solution by Using Graphene Oxide. Water Air Soil Pollut. 2013, 224, 1372. [Google Scholar] [CrossRef]
- Einollahi Peer, F.; Bahramifar, N.; Younesi, H. Removal of Cd (II), Pb (II) and Cu (II) Ions from Aqueous Solution by Polyamidoamine Dendrimer Grafted Magnetic Graphene Oxide Nanosheets. J. Taiwan Inst. Chem. Eng. 2018, 87, 225–240. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Ramin, S. Effective Removal of Copper from Aqueous Solutions by Modified Magnetic Chitosan/Graphene Oxide Nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859–868. [Google Scholar] [CrossRef]
- Zhang, Y.; Chi, H.; Zhang, W.; Sun, Y.; Liang, Q.; Gu, Y.; Jing, R. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism. Nano-Micro Lett. 2014, 6, 80–87. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G.; Wase, D.A.J.; Forster, C.F. Study of the Sorption of Divalent Metal Ions on to Peat. Adsorpt. Sci. Technol. 2000, 18, 639–650. [Google Scholar] [CrossRef]
- Wu, X.W.; Ma, H.W.; Zhang, L.T.; Wang, F.J. Adsorption Properties and Mechanism of Mesoporous Adsorbents Prepared with Fly Ash for Removal of Cu(II) in Aqueous Solution. Appl. Surf. Sci. 2012, 261, 902–907. [Google Scholar] [CrossRef]
- Yavuz, Ö.; Altunkaynak, Y.; Güzel, F. Removal of Copper, Nickel, Cobalt and Manganese from Aqueous Solution by Kaolinite. Water Res. 2003, 37, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Fu, K.B.; Chen, S.; Yao, J.; Bian, L. Comparison of Microscopic Adsorption Characteristics of Zn(II), Pb(II), and Cu(II) on Kaolinite. Sci. Rep. 2022, 12, 15936. [Google Scholar] [CrossRef] [PubMed]
- Suraj, G.; Iyer, C.S.P.; Lalithambika, M. Adsorption of Cadmium and Copper by Modified Kaolinites. Appl. Clay Sci. 1998, 13, 293–306. [Google Scholar] [CrossRef]
- Anna, B.; Kleopas, M.; Constantine, S.; Anestis, F.; Maria, B. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto Natural Bentonite: Study in Mono- and Multi-Metal Systems. Environ. Earth Sci. 2015, 73, 5435–5444. [Google Scholar] [CrossRef]
- Xiao, F.; Howard Huang, J.C. Comparison of Biosorbents with Inorganic Sorbents for Removing Copper(II) from Aqueous Solutions. J. Environ. Manag. 2009, 90, 3105–3109. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Jalajamony, S.; Sreekumari, S.S. Adsorption of Heavy Metal Ions from Aqueous Solutions by Amine and Carboxylate Functionalised Bentonites. Appl. Clay Sci. 2012, 65–66, 67–71. [Google Scholar] [CrossRef]
- Oubagaranadin, J.U.K.; Murthy, Z.V.P.; Mallapur, V.P. Removal of Cu(II) and Zn(II) from Industrial Wastewater by Acid-Activated Montmorillonite-Illite Type of Clay. Comptes Rendus Chim. 2010, 13, 1359–1363. [Google Scholar] [CrossRef]
- Ajala, M.A.; Abdulkareem, A.S.; Tijani, J.O.; Kovo, A.S. Adsorptive Behaviour of Rutile Phased Titania Nanoparticles Supported on Acid-Modified Kaolinite Clay for the Removal of Selected Heavy Metal Ions from Mining Wastewater. Appl. Water Sci. 2022, 12, 19. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, F.A. Kinetic Study on Removal of Copper(II) Using Goethite and Hematite Nano-Photocatalysts. J. Colloid Interface Sci. 2010, 347, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, P.; Zhu, S.; Hua, M.; Pan, B. Nanoconfined Hydrated Zirconium Oxide for Selective Removal of Cu(II)-Carboxyl Complexes from High-Salinity Water via Ternary Complex Formation. Environ. Sci. Technol. 2019, 53, 5319–5327. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhou, K.; Chen, Q.; Wang, A.; Chen, W. Application of Magnetic Ferrite Nanoparticles for Removal of Cu(II) from Copper-Ammonia Wastewater. J. Alloys Compd. 2019, 773, 140–149. [Google Scholar] [CrossRef]
- Dev, V.V.; Baburaj, G.; Antony, S.; Arun, V.; Krishnan, K.A. Zwitterion-Chitosan Bed for the Simultaneous Immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from Multi-Metal Aqueous Systems. J. Clean. Prod. 2020, 255, 120309. [Google Scholar] [CrossRef]
- Wang, N.; Yang, D.; Wang, X.; Yu, S.; Wang, H.; Wen, T.; Song, G.; Yu, Z.; Wang, X. Highly Efficient Pb(II) and Cu(II) Removal Using Hollow Fe3O4@PDA Nanoparticles with Excellent Application Capability and Reusability. Inorg. Chem. Front. 2018, 5, 2174–2182. [Google Scholar] [CrossRef]
- Shahbazi, A.; Younesi, H.; Badiei, A. Functionalized SBA-15 Mesoporous Silica by Melamine-Based Dendrimer Amines for Adsorptive Characteristics of Pb(II), Cu(II) and Cd(II) Heavy Metal Ions in Batch and Fixed Bed Column. Chem. Eng. J. 2011, 168, 505–518. [Google Scholar] [CrossRef]
- Awual, M.R.; Rahman, I.M.M.; Yaita, T.; Khaleque, M.A.; Ferdows, M. PH Dependent Cu(II) and Pd(II) Ions Detection and Removal from Aqueous Media by an Efficient Mesoporous Adsorbent. Chem. Eng. J. 2014, 236, 100–109. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, W.; Zhao, H.; Dang, J.; Jin, R.; Chen, Q. Efficient Removal of Pb(II), Cd(II), Cu(II) and Ni(II) from Aqueous Solutions by Tetrazole-Bonded Bagasse. Chem. Phys. 2020, 529, 110550. [Google Scholar] [CrossRef]
- Pavasant, P.; Apiratikul, R.; Sungkhum, V.; Suthiparinyanont, P.; Wattanachira, S.; Marhaba, T.F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ Using Dried Marine Green Macroalga Caulerpa Lentillifera. Bioresour. Technol. 2006, 97, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.K.; Mohamed, H.S.; Ahmed, S.A.; Sayed, F.H.; Elghandour, A.H.; Ahmed, S.A. Cd2+ and Cu2+ Removal by the Waste Ofthe Marine Brown Macroalga Hydroclathrus Clathratus. Environ. Technol. Innov. 2019, 15, 100365. [Google Scholar] [CrossRef]
- Manzoor, Q.; Nadeem, R.; Iqbal, M.; Saeed, R.; Ansari, T.M. Organic Acids Pretreatment Effect on Rosa Bourbonia Phyto-Biomass for Removal of Pb(II) and Cu(II) from Aqueous Media. Bioresour. Technol. 2013, 132, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Su, S.; Rao, J.; Li, S.; Lei, T.; Bai, H.; Wang, S.; Yang, X. Magnetic Metal-Organic Framework (Fe3O4@ZIF-8) Core-Shell Composite for the Efficient Removal of Pb(II) and Cu(II) from Water. J. Environ. Chem. Eng. 2021, 9, 105959. [Google Scholar] [CrossRef]
- Bakhtiari, S.; Salari, M.; Shahrashoub, M.; Zeidabadinejad, A.; Sharma, G.; Sillanpää, M. A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications. Curr. Pollut. Rep. 2024, 10, 1–39. [Google Scholar] [CrossRef]
- Kettum, W.; Samart, C.; Chanlek, N.; Pakawanit, P.; Reubroycharoen, P.; Guan, G.; Kongparakul, S.; Kiatkamjornwong, S. Enhanced Adsorptive Composite Foams for Copper (II) Removal Utilising Bio-Renewable Polyisoprene-Functionalised Carbon Derived from Coconut Shell Waste. Sci. Rep. 2021, 11, 1459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; He, Y.; Kong, D.; Klein, B.; Yin, S.; Zhao, H. Preparation of Magnetic Activated Carbon by Activation and Modification of Char Derived from Co-Pyrolysis of Lignite and Biomass and Its Adsorption of Heavy-Metal-Containing Wastewater. Minerals 2022, 12, 665. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, H.; Jiang, X.; Liu, L.; Cao, M.; Wang, Z. Exploring of Toxic Pb(II) Removal by Low-Cost Bio-Adsorbent of Camphor Leaf Forestry Waste after Camphor Oil Extraction. Environ. Sci. Pollut. Res. 2020, 27, 43625–43637. [Google Scholar] [CrossRef]
- Alam, M.M.; Hossain, M.A.; Hossain, M.D.; Johir, M.A.H.; Hossen, J.; Rahman, M.S.; Zhou, J.L.; Hasan, A.T.M.K.; Karmakar, A.K.; Ahmed, M.B. The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes 2020, 8, 203. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, Y.; Zhu, K.; Wang, Q.; Wakeel, M.; Wahid, A.; Alharbi, N.S.; Chen, C. Investigation of the Adsorption Mechanisms of Pb(II) and 1-Naphthol by β-Cyclodextrin Modified Graphene Oxide Nanosheets from Aqueous Solution. J. Colloid Interface Sci. 2018, 530, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.Z.N.; Wan Salleh, W.N.; Ismail, A.F.; Yusof, N.; Mohd Yusop, M.Z.; Aziz, F. Adsorptive Removal of Heavy Metal Ions Using Graphene-Based Nanomaterials: Toxicity, Roles of Functional Groups and Mechanisms. Chemosphere 2020, 248, 126008. [Google Scholar] [CrossRef]
- Qin, H.; Gong, T.; Cho, Y.; Lee, C.; Kim, T. A Conductive Copolymer of Graphene Oxide/Poly(1-(3-Aminopropyl)Pyrrole) and the Adsorption of Metal Ions. Polym. Chem. 2014, 5, 4466. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Chowdhury, S.; Mazumder, M.A.J.; Al-Ahmed, A. Removal of lead ions (Pb2+) from water and wastewater: A review on the low-cost adsorbents. Appl. Water Sci. 2022, 12, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K.G.; Sen Gupta, S. Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Alqadami, A.A.; Naushad, M.; Abdalla, M.A.; Ahamad, T.; Abdullah ALOthman, Z.; Alshehri, S.M.; Ghfar, A.A. Efficient Removal of Toxic Metal Ions from Wastewater Using a Recyclable Nanocomposite: A Study of Adsorption Parameters and Interaction Mechanism. J. Clean. Prod. 2017, 156, 426–436. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Gutha, Y.; Zhang, W. Antibacterial Property and Biocompatibility of Chitosan/Poly(Vinyl Alcohol)/ZnO (CS/PVA/ZnO) Beads as an Efficient Adsorbent for Cu(II) Removal from Aqueous Solution. Colloids Surf. B Biointerfaces 2017, 156, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Putz, A.-M.; Ivankov, O.I.; Kuklin, A.I.; Ryukhtin, V.; Ianăşi, C.; Ciopec, M.; Negrea, A.; Trif, L.; Horváth, Z.E.; Almásy, L. Ordered Mesoporous Silica Prepared in Different Solvent Conditions: Application for Cu(II) and Pb(II) Adsorption. Gels 2022, 8, 443. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Zhang, K.; Liu, T.; Hu, Y.; Chen, X.; Wang, C.; Huang, X.; Kong, L.; Liu, J. Super Rapid Removal of Copper, Cadmium and Lead Ions from Water by NTA-Silica Gel. RSC Adv. 2019, 9, 397–407. [Google Scholar] [CrossRef]
- Ali, A.; Alharthi, S.; Ahmad, B.; Naz, A.; Khan, I.; Mabood, F. Efficient Removal of Pb(II) from Aqueous Medium Using Chemically Modified Silica Monolith. Molecules 2021, 26, 6885. [Google Scholar] [CrossRef] [PubMed]
- Patel, H. Fixed-bed Column Adsorption Study: A Comprehensive Review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Removal of Lead(II) by Adsorption Using Treated Granular Activated Carbon: Batch and Column Studies. J. Hazard. Mater. 2005, 125, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Sazali, N.; Harun, Z.; Sazali, N. A Review on Batch and Column Adsorption of Various Adsorbent towards the Removal of Heavy Metal. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 67, 66–88. [Google Scholar]
- Khalil, A.K.A.; Almanassra, I.W.; Chatla, A.; Ihsanullah, I.; Laoui, T.; Ali Atieh, M. Insights into the Adsorption of Lead Ions by Mg-Al LDH Doped Activated Carbon Composites: Implications for Fixed Bed Column and Batch Applications. Chem. Eng. Sci. 2023, 281, 119192. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Salam, K.A.; Evuti, A.M. Continuous Removal of Pb(II) and Cu(II) Ions from Synthetic Aqueous Solutions in a Fixed-Bed Packed Column with Surfactant-Modified Activated Carbon. Sep. Sci. Technol. 2024, 59, 561–579. [Google Scholar] [CrossRef]
- Ahmad, M.; Lubis, N.M.A.; Usama, M.; Ahmad, J.; Al-Wabel, M.I.; Al-Swadi, H.A.; Rafique, M.I.; Al-Farraj, A.S.F. Scavenging Microplastics and Heavy Metals from Water Using Jujube Waste-Derived Biochar in Fixed-Bed Column Trials. Environ. Pollut. 2023, 335, 122319. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Singh, H.; Hansda, A.K.; Goswami, R.; Bhattacharya, J. Performance and Cell Toxicity Studies for the Use of Graphene Oxide-Bimetallic Oxide Hybrids in the Absorptive Removal of Pb(II) from Wastewater: Fixed-Bed Column Study with Regeneration. Environ. Sci. Pollut. Res. 2023, 30, 124950–124963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fan, X.; Liu, X.; He, Q.; Zhao, W.; Han, L.; Cui, J.; Guo, F.; Wang, W. Green and Cost-Efficient Functionalized Clay Adsorbent Enables One-Step Ultraefficient Removal of Pb(II) at Very Low and High Concentrations. Appl. Clay Sci. 2023, 238, 106934. [Google Scholar] [CrossRef]
- Cai, H.; Ma, K.; Zhang, Y.; Li, X.; Wang, W.; Tong, S. Carbonizing Hollow Metal–Organic Framework/Layered Double Hydroxide (MOF/LDH) Nanocomposite with Excellent Adsorption Capacity for Removal of Pb(II) and Organic Dyes from Wastewater. Carbon Res. 2023, 2, 23. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahaman, M.S.; Barbeau, B. Removal of Pb (II), Zn (II), Cu (II), and As (III) Ions from Water Using Kraft Pulp-Based Carboxymethylated Cellulose in a Fixed-Bed Column Adsorption Process. J. Environ. Chem. Eng. 2023, 11, 111181. [Google Scholar] [CrossRef]
Heavy Metal Ion | Source | Allowable Concentration (mg/L) | Toxicity and Hazard | Vulnerable Groups |
---|---|---|---|---|
Pb(II) | Electroplating, mining, paints, batteries, pesticides, coal burning, etc. | 0.01 (ISO) 0.01 (WHO) 0.015 (USEPA) 0.01 (MEP) | Gastrointestinal injury, anorexia, anemia, Decreased IQ, loss of appetite, brain damage, malaise, etc. | People with weakened immunity and residents in areas with serious heavy metal pollution |
Cu(II) | Paints, electroplating, metallurgical and mining processes, pesticides, alloy manufacturing, etc. | 0.05 (ISO) 2.00 (WHO) 1.30 (USEPA) 1.00 (MEP) | Reduced cell viability, kidney damage, anemia, gastrointestinal distress, coma, death | Workers and residents of the industrial zone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Peng, Y.; He, X.; Ouyang, J.; Fu, L.; Yang, H. Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. Nanomaterials 2024, 14, 1037. https://doi.org/10.3390/nano14121037
Fan D, Peng Y, He X, Ouyang J, Fu L, Yang H. Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. Nanomaterials. 2024; 14(12):1037. https://doi.org/10.3390/nano14121037
Chicago/Turabian StyleFan, Dikang, Yang Peng, Xi He, Jing Ouyang, Liangjie Fu, and Huaming Yang. 2024. "Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater" Nanomaterials 14, no. 12: 1037. https://doi.org/10.3390/nano14121037
APA StyleFan, D., Peng, Y., He, X., Ouyang, J., Fu, L., & Yang, H. (2024). Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. Nanomaterials, 14(12), 1037. https://doi.org/10.3390/nano14121037