Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Core/Multi-Shell QDs
2.2.1. Preparation of Stock Solutions
2.2.2. Synthesis of KI-Doped Red-Light-Emitting InxP1−x Core QDs
2.2.3. Synthesis of Red-Light-Emitting KI-Doped InxP1−x/Zn0.6Se0.4/Zn0.6Se0.1S0.3/Zn0.5S0.5 Core/Multi-Shell QDs
2.3. Characterizations
3. Results and Discussion
3.1. Dependence of Defect Passivation Efficiency on KI Dopant Concentration for KI-Doped InxP1−x Core QDs
3.2. Dependence of Photo-Optical Properties (i.e., Absorption, PL Spectra, and Time-Resolved PL Decay Curves) on Dopant (i.e., KI) Concentration for Red-Light-Emitting InxP1−x/Zn0.6Se0.4/Zn0.6Se0.1S0.3/Zn0.5S0.5 Core/Multi-Shell QDs
3.3. Color Gamut Performance of QD Functional CF-OLED Hybrid Display Using KI-Doped R-, G-, and B-QD Functional CFs and Blue OLED BLU
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef]
- Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.; Won, Y.-H.; Jang, H.; Choi, S.-M. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett. 2020, 5, 1316–1327. [Google Scholar] [CrossRef]
- Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506. [Google Scholar] [CrossRef]
- Smith, A.M.; Mohs, A.M.; Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Bawendi, M.; Wilson, W.; Rothberg, L.; Carroll, P.; Jedju, T.M.; Steigerwald, M.; Brus, L. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 1990, 65, 1623. [Google Scholar] [CrossRef] [PubMed]
- Ekimov, A.I.; Efros, A.L.; Onushchenko, A.A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924. [Google Scholar] [CrossRef]
- Shu, Y.; Lin, X.; Qin, H.; Hu, Z.; Jin, Y.; Peng, X. Quantum dots for display applications. Angew. Chem. 2020, 132, 22496–22507. [Google Scholar] [CrossRef]
- Otto, T.; Mu, M.; Mundra, P.; Lesnyak, V.; Demir, H.V.; Gaponik, N.; Eychmu, A. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity. Nano Lett. 2012, 12, 5348–5354. [Google Scholar] [CrossRef]
- Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638. [Google Scholar] [CrossRef]
- Cao, Y.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035. [Google Scholar] [CrossRef]
- Han, H.-V.; Lin, C.-C.; Tsai, Y.-L.; Chen, H.-C.; Chen, K.-J.; Yeh, Y.-L.; Lin, W.-Y.; Kuo, H.-C.; Yu, P. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization. Sci. Rep. 2014, 4, 5734. [Google Scholar] [CrossRef]
- Pattantyus-Abraham, A.G.; Kramer, I.J.; Barkhouse, A.R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M.K.; Gratzel, M.; et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380. [Google Scholar] [CrossRef] [PubMed]
- Schaller, R.D.; Klimov, V.I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.-T.; Ding, H.; Roy, I.; Law, W.-C.; Bergey, E.J.; Maitra, A.; Prasad, P.N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510. [Google Scholar] [CrossRef]
- Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326–4354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ding, S.; Zhuang, W.; Wu, D.; Liu, P.; Qu, X.; Liu, H.; Yang, H.; Wu, Z.; Wang, K.; et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, K.-H.; Jo, J.-H.; Park, B.; Kwon, Y.; Jang, H.S.; Yang, H. Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters. Opt. Mater. Express 2014, 4, 1297–1302. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T.; Kang, M.; Kwak, S.K.; Yoo, T.W.; Park, L.S.; Yang, I.; Hwang, S.; Lee, J.E.; Kim, S.K.; et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 2012, 134, 3804–3809. [Google Scholar] [CrossRef]
- Supran, G.J.; Shirasaki, Y.; Song, K.W.; Caruge, J.-M.; Kazlas, P.T.; Coe-Sullivan, S.; Andrew, T.L.; Bawendi, M.G.; Bulović, V. QLEDs for displays and solid-state lighting. MRS Bull. 2013, 38, 703–711. [Google Scholar] [CrossRef]
- Jang, E. Quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663–4692. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bian, Y.; Zhang, W.; Wu, Z.; Ahn, T.K.; Shen, H.; Du, Z. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization. Adv. Funct. Mater. 2022, 32, 2204529. [Google Scholar] [CrossRef]
- Bae, W.K.; Park, Y.-S.; Lim, J.; Lee, D.; Padilha, L.A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J.M.; Klimov, V.I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zheng, Y.; Xue, J.; Holloway, P.H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548. [Google Scholar] [CrossRef]
- Zhou, S.; Wan, Z.; Lei, Y.; Tang, B.; Tao, G.; Du, P.; Zhao, X. InGaN quantum well with gradually varying indium content for high-efficiency GaN-based green light-emitting diodes. Opt. Lett. 2022, 47, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Zhao, X.; Zhang, J.; Sun, Y.; Yang, H.; Guo, L.J.; Zhou, S. Monolithically integrating III-nitride quantum structure for full-spectrum white LED via bandgap engineering heteroepitaxial growth. Laser Photonics Rev. 2023, 17, 2200455. [Google Scholar] [CrossRef]
- Steckel, J.S.; Ho, J.; Hamilton, C.; Xi, J.; Breen, C.; Liu, W.; Allen, P.; Coe-Sullivan, S. Quantum dots: The ultimate down-conversion material for LCD displays. J. Soc. Inf. Disp. 2015, 23, 294–305. [Google Scholar] [CrossRef]
- Shimizu, K.T.; Böhmer, M.; Estrada, D.; Gangwal, S.; Grabowski, S.; Bechtel, H.; Kang, E.; Vampola, K.J.; Chamberlin, D.; Shchekin, O.B.; et al. Toward commercial realization of quantum dot based white light-emitting diodes for general illumination. Photonics Res. 2017, 5, A1–A6. [Google Scholar] [CrossRef]
- Meinardi, F.; Colombo, A.; Velizhanin, K.A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V.I.; Brovelli, S. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399. [Google Scholar] [CrossRef]
- Yang, J.; Choi, M.K.; Yang, U.J.; Kim, S.Y.; Kim, Y.S.; Kim, J.H.; Kim, D.-H.; Hyeon, T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2020, 21, 26–33. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Bharali, D.J.; Lucey, D.W.; Jayakumar, H.; Pudavar, H.E.; Prasad, P.N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371. [Google Scholar] [CrossRef] [PubMed]
- Europejska, D.G.d.Ś.K.; Commission Delegated Directive (EU). Amending, for the Purposes of Adapting to Scientific and Technical Progress, Annex III to Directive 2011/65/EU of the European Parliament and of the Council as Regards an Exemption for Cadmium in Colour Converting Light-Emitting Diodes (LEDs) for Use in Display Systems; Ares, D., Ed.; European Union Law: Luxembourg, 2017. [Google Scholar]
- Zhu, C.; Chen, Z.; Gao, S.; Goh, B.L.; Samsudin, I.B.; Lwe, K.W.; Wu, Y.; Wu, C.; Su, X. Recent advances in non-toxic quantum dots and their biomedical applications. Prog. Nat. Sci. Mater. Int. 2019, 29, 628–640. [Google Scholar] [CrossRef]
- Brus, L.E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef]
- Langof, L.; Fradkin, L.; Ehrenfreund, E.; Lifshitz, E.; Micic, O.; Nozik, A. Colloidal InP/ZnS core–shell nanocrystals studied by linearly and circularly polarized photoluminescence. Chem. Phys. 2004, 297, 93–98. [Google Scholar] [CrossRef]
- Xie, R.; Battaglia, D.; Peng, X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433. [Google Scholar] [CrossRef] [PubMed]
- Van Avermaet, H.; Schiettecatte, P.; Hinz, S.; Giordano, L.; Ferrari, F.; Nayral, C.; Delpech, F.; Maultzsch, J.; Lange, H.; Hens, Z. Full-spectrum InP-based quantum dots with near-unity photoluminescence quantum efficiency. ACS Nano 2022, 16, 9701–9712. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; Ubbink, R.F.; Stam, M.; Fossé, I.; Houtepen, A.J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758. [Google Scholar] [CrossRef]
- Cui, J.; Beyler, A.P.; Marshall, L.F.; Chen, O.; Harris, D.K.; Wanger, D.D.; Brokmann, X.; Bawendi, M.G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602–606. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Xie, R.; Li, Z.; Peng, X. Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466. [Google Scholar] [CrossRef] [PubMed]
- Beberwyck, B.J.; Surendranath, Y.; Alivisatos, A.P. Cation exchange: A versatile tool for nanomaterials synthesis. J. Phys. Chem. C 2013, 117, 19759–19770. [Google Scholar] [CrossRef]
- Beberwyck, B.J.; Alivisatos, A.P. Ion exchange synthesis of III–V nanocrystals. J. Am. Chem. Soc. 2012, 134, 19977–19980. [Google Scholar] [CrossRef] [PubMed]
- Tessier, M.D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893–4898. [Google Scholar] [CrossRef]
- Reiss, P.; Carriere, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731–10819. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.R. Covalency in semiconductor quantum dots. Chem. Soc. Rev. 1998, 27, 65–71. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, J.H.; Choi, H.; Kim, Y.-H.; Bae, W.K.; Jeong, S. III–V colloidal nanocrystals: Control of covalent surfaces. Chem. Sci. 2020, 11, 913–922. [Google Scholar] [CrossRef]
- Phillips, J. Bonds and Bands in Semiconductors; Momentum Press: New York, NY, USA, 2009. [Google Scholar]
- Li, Y.; Hou, X.; Dai, X.; Yao, Z.; Lv, L.; Jin, Y.; Peng, X. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Li, J.; Pu, C.; Zhou, J.; Lv, L.; Peng, X. Formation of size-tunable and nearly monodisperse InP nanocrystals: Chemical reactions and controlled synthesis. Chem. Mater. 2019, 31, 5331–5341. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, Q.; Wang, S.; Cao, F.; Wang, Y.; Li, L.; Wang, H.; Kong, L.; Yan, L.; Yang, X. Suppressing the cation exchange at the core/shell interface of InP quantum dots by a selenium shielding layer enables efficient green light-emitting diodes. ACS Appl. Mater. Interfaces 2022, 14, 15401–15406. [Google Scholar] [CrossRef]
- Gary, D.C.; Glassy, B.A.; Cossairt, B.M. Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 2014, 26, 1734–1744. [Google Scholar] [CrossRef]
- Gary, D.C.; Cossairt, B.M. Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 2013, 25, 2463–2469. [Google Scholar] [CrossRef]
- Battaglia, D.; Peng, X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030. [Google Scholar] [CrossRef]
- Stein, J.L.; Holden, W.M.; Venkatesh, A.; Mundy, M.E.; Rossini, A.J.; Seidler, G.T.; Cossairt, B.M. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy. Chem. Mater. 2018, 30, 6377–6388. [Google Scholar] [CrossRef]
- Erwin, S.C.; Zu, L.; Haftel, M.I.; Efros, A.L.; Kennedy, T.A.; Norris, D.J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Hahm, D.; Chang, J.H.; Jeong, B.G.; Park, P.; Kim, J.; Lee, S.; Choi, J.; Kim, W.D.; Rhee, S.; Lim, J. Design principle for bright, robust, and color-pure InP/ZnSexS1−x/ZnS heterostructures. Chem. Mater. 2019, 31, 3476–3484. [Google Scholar] [CrossRef]
- Hu, R.; He, F.; Hou, R.; Wu, Z.; Zhang, X.; Shen, H. The Narrow Synthetic Window for Highly Homogenous InP Quantum Dots toward Narrow Red Emission. Inorg. Chem. 2024, 63, 3516–3524. [Google Scholar] [CrossRef]
- Gary, D.C.; Terban, M.W.; Billinge, S.J.; Cossairt, B.M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015, 27, 1432–1441. [Google Scholar] [CrossRef]
- Clark, M.D.; Kumar, S.K.; Owen, J.S.; Chan, E.M. Focusing nanocrystal size distributions via production control. Nano Lett. 2011, 11, 1976–1980. [Google Scholar] [CrossRef]
- Franke, D.; Harris, D.K.; Xie, L.; Jensen, K.F.; Bawendi, M.G. The unexpected influence of precursor conversion rate in the synthesis of III–V quantum dots. Angew. Chem. 2015, 127, 14507–14511. [Google Scholar] [CrossRef]
- Norris, D.J.; Efros, A.L.; Erwin, S.C. Doped nanocrystals. Science 2008, 319, 1776–1779. [Google Scholar] [CrossRef] [PubMed]
- Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81. [Google Scholar] [CrossRef]
- Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W.-S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589. [Google Scholar] [CrossRef]
- Tessier, M.D.; Baquero, E.A.; Dupont, D.; Grigel, V.; Bladt, E.; Bals, S.; Coppel, Y.; Hens, Z.; Nayral, C.; Delpech, F. Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots. Chem. Mater. 2018, 30, 6877–6883. [Google Scholar] [CrossRef]
- Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157. [Google Scholar] [CrossRef] [PubMed]
- Mićić, O.I.; Sprague, J.; Lu, Z.; Nozik, A.J. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett. 1996, 68, 3150–3152. [Google Scholar] [CrossRef]
- Talapin, D.V.; Gaponik, N.; Borchert, H.; Rogach, A.L.; Haase, M.; Weller, H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659–12663. [Google Scholar] [CrossRef]
- Kim, T.-G.; Zherebetskyy, D.; Bekenstein, Y.; Oh, M.H.; Wang, L.-W.; Jang, E.; Alivisatos, A.P. Trap passivation in indium-based quantum dots through surface fluorination: Mechanism and applications. ACS Nano 2018, 12, 11529–11540. [Google Scholar] [CrossRef]
- Ubbink, R.F.; Almeida, G.; Iziyi, H.; Fossé, I.D.; Verkleij, R.; Ganapathy, S.; Van Eck, E.R.; Houtepen, A.J. A Water-Free In Situ HF Treatment for Ultrabright InP Quantum Dots. Chem. Mater. 2022, 34, 10093–10103. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Bian, Y.; Ahn, T.K.; Shen, H.; Ji, B. ZnF2-assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence. Nano Lett. 2022, 22, 4067–4073. [Google Scholar] [CrossRef] [PubMed]
- Mićić, O.I.; Jones, K.M.; Cahill, A.; Nozik, A.J. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B 1998, 102, 9791–9796. [Google Scholar] [CrossRef]
- Adam, S.; Talapin, D.; Borchert, H.; Lobo, A.; McGinley, C.; De Castro, A.; Haase, M.; Weller, H.; Möller, T. The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals. J. Chem. Phys. 2008, 123, 084706. [Google Scholar] [CrossRef] [PubMed]
- Lovingood, D.D.; Strouse, G.F. Microwave induced in-situ active ion etching of growing InP nanocrystals. Nano Lett. 2008, 8, 3394–3397. [Google Scholar] [CrossRef]
- Siramdas, R.; McLaurin, E.J. InP nanocrystals with color-tunable luminescence by microwave-assisted ionic-liquid etching. Chem. Mater. 2017, 29, 2101–2109. [Google Scholar] [CrossRef]
- Yuan, C.; He, M.; Liao, X.; Liu, M.; Zhang, Q.; Wan, Q.; Qu, Z.; Kong, L.; Li, L. Interface defects repair of core/shell quantum dots through halide ion penetration. Chem. Sci. 2023, 14, 13119–13125. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ko, Y.-H.; Prabhakaran, P.; Choi, S.; Kim, G.-J.; Lee, C.; Lee, K.-S. Environmentally friendly quantum-dot color filters for ultra-high-definition liquid crystal displays. Sci. Rep. 2020, 10, 15817. [Google Scholar] [CrossRef]
- Palomaki, P. Quantum Dots + OLED = Your Next TV: Formerly rival technologies will come together in new Samsung displays. IEEE Spectr. 2022, 59, 52–53. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Singh, K.J.; Liu, A.-C.; Lin, C.-C.; Chen, Z.; Wang, K.; Lin, Y.; Liu, Z.; Wu, T.; Kuo, H.C. Advances in quantum-dot-based displays. Nanomaterials 2020, 10, 1327. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Kim, S.; Oh, J.H.; Yoon, H.C.; Jo, J.H.; Yang, H.; Do, Y.R. Color-by-blue QD-emissive LCD enabled by replacing RGB color filters with narrow-band GR InP/ZnSeS/ZnS QD films. Adv. Opt. Mater. 2018, 6, 1701239. [Google Scholar] [CrossRef]
- BT IR. Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange; ITU: Geneva, Switzerland, 2012. [Google Scholar]
- Shaw, M.; Fairchild, M. Evaluating the 1931 CIE color-matching functions. Color Res. Appl. 2002, 27, 316–329. [Google Scholar] [CrossRef]
- Chen, H.; He, J.; Wu, S.-T. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1900611. [Google Scholar] [CrossRef]
- Weber, G.; Teale, F. Determination of the absolute quantum yield of fluorescent solutions. Trans. Faraday Soc. 1957, 53, 646–655. [Google Scholar] [CrossRef]
- Park, Y.G.; Cho, D.Y.; Kim, R.; Kim, K.H.; Lee, J.W.; Lee, D.H.; Jeong, S.I.; Ahn, N.R.; Lee, W.G.; Choi, J.B. Defect Engineering for High Performance and Extremely Reliable a-IGZO Thin-Film Transistor in QD-OLED. Adv. Electron. Mater. 2022, 8, 2101273. [Google Scholar] [CrossRef]
- Yamaga, M.; Víllora, E.G.; Shimamura, K.; Ichinose, N.; Honda, M. Donor structure and electric transport mechanism in β–Ga2O3. Phys. Rev. B 2003, 68, 155207. [Google Scholar]
- Djurišić, A.B.; Choy, W.C.; Roy, V.A.L.; Leung, Y.H.; Kwong, C.Y.; Cheah, K.W.; Rao, T.G.; Chan, W.K.; Lui, H.F.; Surya, C. Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv. Funct. Mater. 2004, 14, 856–864. [Google Scholar] [CrossRef]
- Babentsov, V.; Sizov, F. Defects in quantum dots of IIB–VI semiconductors. Opto-Electron. Rev. 2008, 16, 208–225. [Google Scholar] [CrossRef]
- Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H. Giant zeeman splitting for monolayer nanosheets at room temperature. J. Am. Chem. Soc. 2020, 142, 20616–20623. [Google Scholar] [CrossRef]
- Mićić, O.I.; Nozik, A.J.; Lifshitz, E.; Rajh, T.; Poluektov, O.G.; Thurnauer, M.C. Electron and hole adducts formed in illuminated InP colloidal quantum dots studied by electron paramagnetic resonance. J. Phys. Chem. B 2002, 106, 4390–4395. [Google Scholar] [CrossRef]
- Long, B.; Zhao, D.; Liu, W. Thermodynamics studies on the solubility of inorganic salt in organic solvents: Application to KI in organic solvents and water–ethanol mixtures. Ind. Eng. Chem. Res. 2012, 51, 9456–9467. [Google Scholar] [CrossRef]
- Xie, L.; Harris, D.K.; Bawendi, M.G.; Jensen, K.F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 2015, 27, 5058–5063. [Google Scholar] [CrossRef]
- Aleem, S.; Asikin-Mijan, N.; Hussain, A.; Voon, C.; Dolfi, A.; Sivasangar, S.; Taufiq-Yap, Y. Catalytic ketonization of palmitic acid over a series of transition metal oxides supported on zirconia oxide-based catalysts. RSC Adv. 2021, 11, 31972–31982. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Feng, Y.; Zhang, Y. Facile and reproducible synthesis of red-emitting CdSe nanocrystals in amine with long-term fixation of particle size and size distribution. J. Phys. Chem. C 2007, 111, 526–531. [Google Scholar] [CrossRef]
- Cho, E.; Jang, H.; Lee, J.; Jang, E. Modeling on the size dependent properties of InP quantum dots: A hybrid functional study. Nanotechnology 2013, 24, 215201. [Google Scholar] [CrossRef]
- Kahlweit, M. Ostwald ripening of precipitates. Adv. Colloid Interface Sci. 1975, 5, 1–35. [Google Scholar] [CrossRef]
- Duan, X.; Ma, J.; Zhang, W.; Liu, P.; Liu, H.; Hao, J.; Wang, K.; Samuelson, L.; Sun, X.W. Study of the interfacial oxidation of InP quantum dots synthesized from tris (dimethylamino) phosphine. ACS Appl. Mater. Interfaces 2022, 15, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Klimov, V.I.; Mikhailovsky, A.A.; McBranch, D.; Leatherdale, C.A.; Bawendi, M.G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013. [Google Scholar] [CrossRef]
- Vaxenburg, R.; Rodina, A.; Lifshitz, E.; Efros, A.L. Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals. Nano Lett. 2016, 16, 2503–2511. [Google Scholar] [CrossRef]
- Baumgartner, J.; Dey, A.; Bomans, P.H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N.A.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Calvin, J.J.; Swabeck, J.K.; Sedlak, A.B.; Kim, Y.; Jang, E.; Alivisatos, A.P. Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 2020, 142, 18897–18906. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X.W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Yin, M.; Pan, T.; Yu, Z.; Peng, X.; Zhang, X.; Xie, W.; Liu, S.; Zhang, L. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer. Org. Electron. 2018, 62, 407–411. [Google Scholar] [CrossRef]
- Hu, Z.; Yin, Y.; Ali, M.U.; Peng, W.; Zhang, S.; Li, D.; Zou, T.; Li, Y.; Jiao, S.; Chen, S.-J.; et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 2020, 12, 2103–2110. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, S.; Peng, W.; Zhang, S.; Li, Y.; Li, D.; Jiao, S.; Chen, S.-J.; Lee, C.-Y.; Zhou, H. 75-4: Inkjet-Printed Quantum Dot Display with Blue OLEDs for Next Generation Display. In SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2019; pp. 1075–1078. [Google Scholar]
- Huang, W.; Jin, Q.; Zhao, D.; Sun, Z.; Li, W.; Shu, S.; Sun, Q.; Tian, Y.; Zhang, J.; An, C. 62-2: Flexible Full-Color Active-Matrix Quantum-Dot OLED Display. In SID Symposium Digest of Technical Papers; Wiley: Hoboken, NJ, USA, 2019; pp. 888–891. [Google Scholar]
Applications | Light-Emitting Color | WL [nm] | FWHM [nm] | CIE Coordinates [x, y] | Color Gamut | Ref. | |
---|---|---|---|---|---|---|---|
NTSC | Rec. 2020 (BT.2020) | ||||||
QD functional-CF OLED for undoped R-QD | Blue | 447 | 29 | (0.15, 0.02) | 125.8% | 94.2% | Our work |
Green | 533 | 22 | (0.20, 0.77) | ||||
Red | 628 | 34 | (0.70, 0.29) | ||||
QD functional-CF OLED for 3% KI doped R-QD | Blue | 447 | 29 | (0.15, 0.02) | 131.1% | 98.2% | |
Green | 533 | 22 | (0.20, 0.77) | ||||
Red | 635 | 28 | (0.72, 0.27) | ||||
Flexible full-color active-matrix QD-OLED display 13.6 inch (1920 × 1080) | Blue | 461 | 26 | (0.137, 0.063) | 93.0% | - | [110] |
Inkjet-printed 6.6-inch red active matrix QD-OLED display panel with a resolution of 384 × 300 pixels with R-CdSe/ZnS QDs | BOLED | 462 | 21 | (0.136, 0.0693) | The maximum light conversion efficiency reached 32.7% | [111] | |
QD-BOLED | 630 | 35 | (0.721, 0.279) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-E.; Lee, C.-J.; Lee, S.-J.; Jeong, U.-H.; Park, J.-G. Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots. Nanomaterials 2024, 14, 1055. https://doi.org/10.3390/nano14121055
Lee J-E, Lee C-J, Lee S-J, Jeong U-H, Park J-G. Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots. Nanomaterials. 2024; 14(12):1055. https://doi.org/10.3390/nano14121055
Chicago/Turabian StyleLee, Ji-Eun, Chang-Jin Lee, Seung-Jae Lee, Ui-Hyun Jeong, and Jea-Gun Park. 2024. "Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots" Nanomaterials 14, no. 12: 1055. https://doi.org/10.3390/nano14121055
APA StyleLee, J. -E., Lee, C. -J., Lee, S. -J., Jeong, U. -H., & Park, J. -G. (2024). Potassium Iodide Doping for Vacancy Substitution and Dangling Bond Repair in InP Core-Shell Quantum Dots. Nanomaterials, 14(12), 1055. https://doi.org/10.3390/nano14121055