Mixing Rules for Left-Handed Disordered Metamaterials: Effective-Medium and Dispersion Properties
Abstract
:1. Introduction
2. Mixing Rules for the Electric Permittivity
2.1. The Maxwell Garnett Mixing Rule
2.2. The Bruggeman Mixing Rule
3. Mixing Rules for the Electric Conductivity
4. Dispersion Properties
Zero-Order Dispersion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maxwell Garnett, J.C. Colours in metallic glasses, metallic films, and in metallic solution. Philos. Trans. A 1905, 205, 385–420. [Google Scholar]
- Markel, V.A. Introduction to the maxwell garnett approximation: Tutorial. J. Opt. Soc. Am. A 2016, 33, 1244–1255. [Google Scholar] [CrossRef]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Polder, D.; van Santen, J.H. The effective permeability of mixtures of solids. Physica 1946, 7, 257–271. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, X.; Li, F.; Fan, Z. Evaluation of mixing rules for dielectric constants of composite dielectrics by mc-fem calculation on 3d cubic lattice. J. Electroceramics 2003, 11, 227–239. [Google Scholar] [CrossRef]
- Manaila-Maximean, D. Effective permittivity of a multi-phase system: Nanoparticle-doped polymer-dispersed liquid crystal films. Molecules 2021, 26, 1441. [Google Scholar] [CrossRef]
- Ganea, C.P.; Cîrcu, V.; Manaila-Maximean, D. Effect of titanium oxide nanoparticles on the dielectric properties and ionic conductivity of a new smectic bis-imidazolium salt with dodecyl sulfate anion and cyanobiphenyl mesogenic groups. J. Mol. Liq. 2020, 317, 113939. [Google Scholar] [CrossRef]
- Kristensson, G.; Rikte, S.; Sihvola, A. Mixing formulas in time domain. J. Opt. Soc. Am. A 1998, 15, 1411–1422. [Google Scholar] [CrossRef]
- Wu, K.; Li, J.; von Salzen, K.; Zhang, F. Explicit solutions to the mixing rules with three-component inclusions. J. Quant. Spectrosc. Radiat. Transf. 2018, 207, 78–82. [Google Scholar] [CrossRef]
- Sihvola, A. Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Gomez-Diaz, J.S.; Tymchenko, M.; Alù, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 2015, 114, 233901. [Google Scholar] [CrossRef]
- Hu, G.; Krasnok, A.; Mazor, Y.; Qiu, C.; Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 2020, 20, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Leonhardt, U. Optical conformal mapping. Science 2006, 312, 1777–1780. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Alù, A.; Silveirinha, M.G.; Salandrino, A.; Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B 2007, 75, 155410. [Google Scholar] [CrossRef]
- Wang, B.-X.; Duan, G.; Lv, W.; Tao, Y.; Xiong, H.; Zhang, D.-Q.; Yang, G.; Shu, F.-Z. Design and experimental realization of triple-band electromagnetically induced transparency terahertz metamaterials employing two big-bright modes for sensing applications. Nanoscale 2023, 15, 18345–18446. [Google Scholar] [CrossRef]
- Nookala, N.; Lee, J.; Tymchenko, M.; Gomez-Diaz, J.S.; Demmerle, F.; Boehm, G.; Lai, K.; Shvets, G.; Amann, M.; Alu, A.; et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 2016, 3, 283–288. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Neshev, D.; Aharonovich, I. Optical metasurfaces: New generation building blocks for multi-functional optics. Light Sci. Appl. 2018, 7, 58. [Google Scholar] [CrossRef]
- Engleberg, J.; Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 1991, 11, 2000. [Google Scholar] [CrossRef]
- Papakostas, A.; Potts, A.; Bagnall, D.M.; Prosvirnin, S.L.; Coles, H.J.; Zheludev, N.I. Optical manifestations of planar chirality. Phys. Rev. Lett. 2003, 90, 107404. [Google Scholar] [CrossRef]
- Overvig, A.; Alù, A. Diffractive nonlocal metasurfaces. Laser Photon. Rev. 2022, 16, 2100633. [Google Scholar] [CrossRef]
- Wang, S.; Deng, Z.L.; Wang, Y.; Zhou, Q.; Wang, X.; Cao, Y.; Guan, B.O.; Xiao, S.; Li, X. Arbitrart polarization conversion dichroism metasurfaces for all-in-one full poincaré sphere polarizers. Light Sci. Appl. 2021, 10, 24. [Google Scholar] [CrossRef]
- Tanaka, K.; Arslan, D.; Fasold, S.; Steinert, M.; Sautter, J.; Falkner, M.; Pertsch, T.; Decker, M.; Staude, I. Chiral bilayer all-dielectric metasurfaces. ACS Nano 2020, 14, 15926–15935. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, H.; Yang, Y.; Badloe, T.; Jeon, N.; Rho, J. Three-dimensional artificial chirality towards low-cost and ultra-sensitive enantioselective sensing. Nanoscale 2022, 14, 3720–3730. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Kan, Q.; Ye, J.; Feng, S.; Sun, W.; Han, P.; Qu, S.; Zhang, Y. Spin-selected focusing and imaging based on metasurface lens. Opt. Express 2015, 23, 26434–26441. [Google Scholar] [CrossRef]
- Basiri, A.; Chen, X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-stokes polarimetric measurements. Light Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef]
- Chen, K.; Ding, G.; Hu, G.; Jin, Z.; Zhao, J.; Feng, Y.; Jiang, T.; Alù, A.; Qiu, C.W. Directional janus metasurface. Adv. Mater. 2019, 32, 1906352. [Google Scholar] [CrossRef]
- Yu, S.; Qiu, C.W.; Chong, Y.; Torquato, S.; Park, N. Engineered disorder in photonics. Nat. Rev. 2021, 6, 226–243. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, C.; Li, G. Disordered optical metasurfaces: From light manipulation to energy harvesting. Adv. Phys. X 2023, 8, 2234136. [Google Scholar] [CrossRef]
- Zaiser, M.; Zapperi, S. Disordered mechanical metamaterials. Nat. Rev. Phys. 2023, 5, 679–688. [Google Scholar] [CrossRef]
- Landon, P.B.; Mo, A.H.; Printz, A.D.; Emerson, C.; Zhang, C.; Janetanakit, W.; Colburn, D.A.; Akkiraju, S.; Dossou, S.; Chong, B.; et al. Asymmetric colloidal janus particle formation is core-size-dependent. Langmuir 2015, 31, 9148–9154. [Google Scholar] [CrossRef] [PubMed]
- Conradi, M.; Ravnik, M.; Bele, M.; Zorko, M.; Zumer, S.; Musevic, I. Janus nematic colloids. Soft Matter 2009, 5, 3905–3912. [Google Scholar] [CrossRef]
- Sahu, D.K.; Dhara, S. Measuring electric-field-induced dipole moments of metal-dielectric janus particles in a nematic liquid crystal. Phys. Rev. Appl. 2020, 14, 034004. [Google Scholar] [CrossRef]
- Braun, L.B.; Zentel, R. Functional liquid crystalline particles and beyond. Liq. Cryst. 2019, 46, 13–14. [Google Scholar] [CrossRef]
- Yasuda, H.; Matsuno, R.; Koito, N.; Hosoda, H.; Tani, T.; Naya, M. Anti-reflective coating for visible light using a silver nanodisc metasurface with a refractive index of less than 1.0. Appl. Phys. Lett. 2017, 111, 231105. [Google Scholar] [CrossRef]
- Yu, P.; Li, J.; Zhang, S.; Jin, Z.; Schütz, G.; Qiu, C.-W. Dynamic janus metasurfaces in the visible spectral region. Nano Lett. 2018, 18, 4584–4589. [Google Scholar] [CrossRef]
- Fuh, A.Y.G.; Lee, W.; Huang, Y.C. Derivation of extended maxwell garnett formula for carbon-nanotube-doped nematic liquid crystal. Liq. Cryst. 2013, 40, 745–755. [Google Scholar] [CrossRef]
- Sihvola, A. Metamaterials and depolarization factors. Prog. Electromagn. Res. 2005, 51, 65–82. [Google Scholar] [CrossRef]
- McLachalan, D.S.; Blaszkiewicz, M.; Newnham, R.E. Electrical resistivity of composites. J. Am. Cream. Soc. 1990, 73, 2187–2203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărar, A.; Maclean, S.A.; Gross, B.M.; Mănăilă-Maximean, D.; Dănilă, O. Mixing Rules for Left-Handed Disordered Metamaterials: Effective-Medium and Dispersion Properties. Nanomaterials 2024, 14, 1056. https://doi.org/10.3390/nano14121056
Bărar A, Maclean SA, Gross BM, Mănăilă-Maximean D, Dănilă O. Mixing Rules for Left-Handed Disordered Metamaterials: Effective-Medium and Dispersion Properties. Nanomaterials. 2024; 14(12):1056. https://doi.org/10.3390/nano14121056
Chicago/Turabian StyleBărar, Ana, Stephen A. Maclean, Barry M. Gross, Doina Mănăilă-Maximean, and Octavian Dănilă. 2024. "Mixing Rules for Left-Handed Disordered Metamaterials: Effective-Medium and Dispersion Properties" Nanomaterials 14, no. 12: 1056. https://doi.org/10.3390/nano14121056
APA StyleBărar, A., Maclean, S. A., Gross, B. M., Mănăilă-Maximean, D., & Dănilă, O. (2024). Mixing Rules for Left-Handed Disordered Metamaterials: Effective-Medium and Dispersion Properties. Nanomaterials, 14(12), 1056. https://doi.org/10.3390/nano14121056