Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Equations
2.2. Drag Model and Drag Laws
2.3. Model Set-Up and Parameters
2.4. Grid-Independent Test
3. Results and Discussion
3.1. Bed Expansion Behaviors
3.2. Axial Solid Mixing Behavior
3.3. Radial Solid Mixing Behavior
3.4. Agglomerate Dispersion Coefficient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, M. Recent Development of Nanomaterials for Chemical Engineering. Nanomaterials 2024, 14, 456. [Google Scholar] [CrossRef]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.; Jen, T. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Zhang, D.; Quayle, M.J.; Petersson, G.; Van Ommen, J.R.; Folestad, S. Atomic scale surface engineering of micro- to nano-sized pharmaceutical particles for drug delivery applications. Nanoscale 2017, 9, 11410–11417. [Google Scholar] [CrossRef]
- McNeary, W.W.; Zaccarine, S.F.; Lai, A.; Linico, A.E.; Pylypenko, S.; Weimer, A.W. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment. Appl. Catal. 2019, 254, 587–593. [Google Scholar] [CrossRef]
- Yang, J.; Cao, K.; Gong, M.; Shan, B.; Chen, R. Atomically decorating of MnOx on palladium nanoparticles towards selective oxidation of benzyl alcohol with high yield. J. Catal. 2020, 386, 60–69. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, K.; Liu, M.; Zhang, J.; Chen, R.; Zhang, Q.; Xia, Z. Dual-Shelled RbLi(Li3SiO4)2:Eu2+@Al2O3@ODTMS Phosphor as a Stable Green Emitter for High-Power LED Backlights. Angew. Chem.-Int. Ed. 2020, 59, 12938–12943. [Google Scholar] [CrossRef]
- Zhao, Z.; Kong, Y.; Zhang, Z.; Huang, G.; Mei, Y. Atomic layer-deposited nanostructures and their applications in energy storage and sensing. J. Mater. Res. 2020, 35, 701–719. [Google Scholar] [CrossRef]
- Hakim, L.F.; Blackson, J.; George, S.M.; Weimer, A.W. Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor. Chem. Vap. Depos. 2005, 11, 420. [Google Scholar] [CrossRef]
- van Ommen, J.R.; Valverde, J.M.; Pfeffer, R. Fluidization of nanopowders: A review. Nanopart Res. 2012, 14, 737. [Google Scholar] [CrossRef]
- Ali, S.S.; Arsad, A.; Roberts, K.L.; Asif, M. Effect of Inlet Flow Strategies on the Dynamics of Pulsed Fluidized Bed of Nanopowder. Nanomaterials 2023, 13, 304. [Google Scholar] [CrossRef]
- Liu, D.; van Wachem, B.G.; Mudde, R.F.; Chen, X.; van Ommen, J.R. Characterization of fluidized nanoparticle agglomerates by using adhesive CFD-DEM simulation. Powder Technol. 2016, 304, 198–207. [Google Scholar] [CrossRef]
- Ahmadabadi, E.F.; Haghshenasfard, M.; Esfahany, M.N. CFD simulation and experimental validation of nanoparticles fluidization in a conical spouted bed. Chem. Eng. Res. Des. 2020, 160, 476–485. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Q.; Wang, Y.; Wei, F. Review on the nanoparticle fluidization science and technology. Chin. J. Chem. Eng. 2016, 24, 9–22. [Google Scholar] [CrossRef]
- Wang, X.S.; Palero, V.; Soria, J.; Rhodes, M.J. Laser-based planar imaging of nano-particle fluidization: Part II-mechanistic analysis of nanoparticle aggregation. Chem. Eng. Sci. 2006, 61, 8040–8049. [Google Scholar] [CrossRef]
- Motlagh, A.H.A.; Grace, J.R.; Salcudean, M.; Hrenya, C.M. New structure-based model for Eulerian simulation of hydrodynamics in gas-solid fluidized beds of Geldart group “A” particles. Chem. Eng. Sci. 2014, 120, 22–36. [Google Scholar] [CrossRef]
- Yao, W.; Guangsheng, G.; Fei, W.; Jun, W. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol. 2002, 124, 152–159. [Google Scholar] [CrossRef]
- De Martín, L.; Fabre, A.; Ruud van Ommen, J. The fractal scaling of fluidized nanoparticle agglomerates. Chem. Eng. Sci. 2014, 112, 79–86. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Yang, C.; Chen, T. Numerical study on the hydrodynamics of agglomerates at intermediate Reynolds numbers. Chin. J. Chem. Eng. 2020, 28, 1533–1541. [Google Scholar] [CrossRef]
- Huilin, L.; Shuyan, W.; Jianxiang, Z.; Gidaspow, D.; Ding, J.; Xiang, L. Numerical simulation of flow behavior of agglomerates in gas-cohesive particles fluidized beds using agglomerates-based approach. Chem. Eng. Sci. 2010, 65, 1462–1473. [Google Scholar] [CrossRef]
- Wang, J. Continuum theory for dense gas-solid flow: A state-of-the-art review. Chem. Eng. Sci. 2019, 215, 115428. [Google Scholar]
- Huilin, L.; Gidaspow, D.; Bouillard, J.; Wentie, L. Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow. Chem. Eng. J. 2003, 95, 1–13. [Google Scholar] [CrossRef]
- Ergun, S. Fluid Flow through Packed Columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Wen, C.Y.; Yu, Y.H. A Generalised Method for Predicting Minimum Fluidization Velocity. AIChE J. 1966, 12, 610–612. [Google Scholar] [CrossRef]
- Bahramian, A.; Ostadi, H.; Olazar, M. Evaluation of Drag Models for Predicting the Fluidization Behavior of Silver oxide Nanoparticle Agglomerates in a Fluidized Bed. Ind. Eng. Chem. Res. 2013, 52, 7569–7578. [Google Scholar] [CrossRef]
- Liu, D.; van Wachem, B.G.; Mudde, R.F.; Chen, X.; van Ommen, J.R. An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization. AIChE J. 2016, 62, 2259–2270. [Google Scholar] [CrossRef]
- Wang, J.; van der Hoef, M.A.; Kuipers, J.A.M. The role of scale resolution versus inter-particle cohesive forces in two-fluid modeling of bubbling fluidization of Geldart A particles. Chem. Eng. Sci. 2011, 66, 4229–4240. [Google Scholar] [CrossRef]
- Li, T.; Pougatch, K.; Salcudean, M.; Grecov, D. Numerical simulation of horizontal jet penetration in a three-dimensional fluidized bed. Powder Technol. 2008, 184, 89–99. [Google Scholar] [CrossRef]
- Wu, R.M.; Lee, D.J. Hydrodynamic drag force exerted on a moving floc and its implication to free-settling tests. Water Res. 1998, 32, 760–768. [Google Scholar] [CrossRef]
- Chung, H.Y.; Wu, R.M.; Lee, D.J. Hydrodynamic drag force on porous sphere(s) moving in a Newtonian fluid: Two case studies. J. Taiwan Inst. Chem. Eng. 2019, 101, 8–14. [Google Scholar] [CrossRef]
- Jain, A.K.; Basu, S. Flow past a porous permeable sphere: Hydrodynamics and heat-transfer studies. Ind. Eng. Chem. Res. 2012, 51, 2170–2178. [Google Scholar] [CrossRef]
- De Martín, L.; Bouwman, W.G.; Van Ommen, J.R. Multidimensional nature of fluidized nanoparticle agglomerates. Langmuir 2014, 30, 12696–12702. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Yang, C.; Li, Y. Experimental investigation on the microstructure of fluidized nanoparticle agglomerates by TEM image analysis. Can. J. Chem. Eng. 2020, 99, 1125–1136. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H. Numerical and Experimental Analysis on the Hydrodynamic Behaviors of Nanoparticle Agglomerates at Moderate Reynolds Numbers. Ind. Eng. Chem. Res. 2021, 60, 753–761. [Google Scholar] [CrossRef]
- Nam, C.H.; Pfeffer, R.; Dave, R.N.; Sundaresan, S. Aerated vibrofluidization of silica nanoparticles. AIChE J. 2004, 50, 1776–1785. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Wei, F. Solids mixing behavior in a nano-agglomerate fluidized bed. Powder Technol. 2008, 182, 334–341. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B.; Zhou, T.; Liang, X. Agglomeration Mechanism of Nanoparticles by Adding Coarse Fluid Catalytic Cracking Particles. Chem. Eng. Technol. 2016, 39, 1490–1496. [Google Scholar] [CrossRef]
- Wang, X.S.; Palero, V.; Soria, J.; Rhodes, M.J. Laser-based planar imaging of nano-particle fluidization: Part I-determination of aggregate size and shape. Chem. Eng. Sci. 2006, 61, 5476–5486. [Google Scholar] [CrossRef]
- Wang, J.; van der Hoef, M.A.; Kuipers, J.A.M. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds. Chem. Eng. Sci. 2010, 65, 3772–3785. [Google Scholar] [CrossRef]
- Yao, W.; Yong, J.; Fei, W.; Wu, J. Agglomerate Particulate Fluidization of Primary Nano-Particles. Huagong Xuebao/J. Chem. Ind. Eng. China 2002, 53, 344–348. [Google Scholar]
- Wei, F.; Yang, Y.; Jin, Y. Mixing behavior of wide-sizedistribution particles in a FCC riser. Powder Technol. 2003, 132, 25–29. [Google Scholar]
- Huang, C.; Qian, Z.; Zhang, M.; Wei, F. Solids mixing in a down-flow circulating fluidized bed of 0.418-m in diameter. Powder Technol. 2006, 161, 48–52. [Google Scholar] [CrossRef]
- Farahani, A.; Norouzi, H.; Zarghami, R. Mixing of nanoparticle agglomerates in fluidization using CFD-DEM at ABF and APF regimes. Chem. Eng. Res. Des. 2021, 169, 165–175. [Google Scholar] [CrossRef]
- Johnson, P.C.; Jackson, R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 1987, 176, 67–93. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. J. Non-Newtonian Fluid Mech. 1994, 55, 207–208. [Google Scholar]
Property | Symbol (Unit) | Value |
---|---|---|
Nanoparticle diameter | dp (nm) | 16 |
Agglomerate diameter | da (μm) | 416 |
Particle density | ρp (kg/m3) | 2560 |
Agglomerate density | ρb (kg/m3) | 36.6 |
Gas viscosity | µf (Pa·s) | 1.81 × 10−5 |
Gas density | ρf (kg/m3) | 1.205 |
Initial packing height | H0 (m) | 0.2 |
Maximum packing limit | αp,max | 0.67 |
Solid Sphere | Homogenous Porous Sphere | Fractal Porous Sphere | Experimental [35] | |
---|---|---|---|---|
(m/s) | 0.007 | 0.007 | 0.007 | 0.007 |
(m/s) | 0.007 | 0.027 | 0.042 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Hu, X.; Liu, N.; Liu, H. Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws. Nanomaterials 2024, 14, 1057. https://doi.org/10.3390/nano14121057
Wang S, Hu X, Liu N, Liu H. Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws. Nanomaterials. 2024; 14(12):1057. https://doi.org/10.3390/nano14121057
Chicago/Turabian StyleWang, Shaowei, Xiaobing Hu, Niannian Liu, and Huanpeng Liu. 2024. "Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws" Nanomaterials 14, no. 12: 1057. https://doi.org/10.3390/nano14121057
APA StyleWang, S., Hu, X., Liu, N., & Liu, H. (2024). Flow Behavior of Nanoparticle Agglomerates in a Fluidized Bed Simulated with Porous-Structure-Based Drag Laws. Nanomaterials, 14(12), 1057. https://doi.org/10.3390/nano14121057