Hybrid Organic–Si C-MOSFET Image Sensor Designed with Blue-, Green-, and Red-Sensitive Organic Photodiodes on Si C-MOSFET-Based Photo Signal Sensor Circuit
Abstract
:1. Introduction
2. Results
2.1. Design of Hybrid Organic–Si B, G, and R Image Sensor Pixels
2.2. Optical Properties and Energy Band Diagrams of B, G, and R Organic–Si Photodiodes
2.3. Dependency of Voltage Sensing Margin on Light Illumination Intensity for Hybrid Organic–Si G Image Sensor Pixel
2.4. Difference in Voltage Sensing Margins with and without White-Light Illumination for Hybrid Organic–Si B, G, and R Image Sensor Pixel
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El Gamal, A.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Gouveia, L.C.P.; Choubey, B. Advances on CMOS image sensors. Sens. Rev. 2016, 36, 231–239. [Google Scholar] [CrossRef]
- El Gamal, A. Trends in CMOS image sensor technology and design. In Proceedings of the Digest. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; pp. 805–808. [Google Scholar]
- Fossum, E.R.; Hondongwa, D.B. A review of the pinned photodiode for CCD and CMOS image sensors. IEEE J. Electron Devices Soc. 2014, 2, 33–43. [Google Scholar] [CrossRef]
- Jansen-van Vuuren, R.D.; Armin, A.; Pandey, A.K.; Burn, P.L.; Meredith, P. Organic photodiodes: The future of full color detection and image sensing. Adv. Mater. 2016, 28, 4766–4802. [Google Scholar] [CrossRef]
- Gove, R.J. CMOS image sensor technology advances for mobile devices. In High Performance Silicon Imaging; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–240. [Google Scholar]
- Nixon, R.; Doudoumopoulos, N.; Fossum, E.R. Backside Illumination of CMOS Image Sensor. U.S. Patent US6429036B1, 6 August 2002. [Google Scholar]
- Sukegawa, S.; Umebayashi, T.; Nakajima, T.; Kawanobe, H.; Koseki, K.; Hirota, I.; Haruta, T.; Kasai, M.; Fukumoto, K.; Wakano, T. A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 484–485. [Google Scholar]
- Huang, Q.; Su, L.; Jin, T. Back-Side Illuminated Photogate CMOS Active Pixel Sensor Structure With Improved Short Wavelength Response. IEEE Sens. J. 2011, 11, 1993–1997. [Google Scholar] [CrossRef]
- Teranishi, N.; Watanabe, H.; Ueda, T.; Sengoku, N. Evolution of optical structure in image sensors. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 24.21.21–24.21.24. [Google Scholar]
- Wuu, S.; Wang, C.; Hseih, B.; Tu, Y.; Tseng, C.; Hsu, T.; Hsiao, R.; Takahashi, S.; Lin, R.; Tsai, C. A leading-edge 0.9 µm pixel CMOS image sensor technology with backside illumination: Future challenges for pixel scaling. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 14.11.11–14.11.14. [Google Scholar]
- Wang, B.; Mu, J. High-speed Si-Ge avalanche photodiodes. PhotoniX 2022, 3, 8. [Google Scholar] [CrossRef]
- Kim, I.-H.; Park, J.-S.; Shim, T.-H.; Park, J.-G. Si CMOS image-sensors designed with hydrogen-ion implantation induced nanocavities for enhancing output voltage sensing margin via proximity gettering. IEEE Trans. Electron Devices 2017, 64, 2345–2349. [Google Scholar] [CrossRef]
- Joy, T.; Pyo, S.; Park, S.; Choi, C.; Palsule, C.; Han, H.; Feng, C.; Lee, S.; McKee, J.; Altice, P. Development of a production-ready, back-illuminated CMOS image sensor with small pixels. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 1007–1010. [Google Scholar]
- Meynants, G.; Bogaerts, J.; Wang, X.; Vanhorebeek, G. Backside illuminated global shutter CMOS image sensors. In Proceedings of the IEEE International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011; pp. 305–308. [Google Scholar]
- Wuu, S.; Wang, C.; Yaung, D.; Tu, Y.; Liu, J.; Hsu, T.; Shiu, F.; Yu, C.; Shiau, G.; Lin, R. A Manufacturable Back-Side Illumination Technology Using Bulk Si Substrate for Advanced CMOS Image Sensors. In Proceedings of the 2009 International Image Sensor Workshop, Bergen, Norway, 25–28 June 2009. [Google Scholar]
- Rhodes, H.; Tai, D.; Qian, Y.; Mao, D.; Venezia, V.; Zheng, W.; Xiong, Z.; Liu, C.; Ku, K.; Manabe, S. The mass production of BSI CMOS image sensors. In Proceedings of the International Image Sensor Workshop, Bergen, Norway, 25–28 June 2009; pp. 27–32. [Google Scholar]
- Kim, H.; Park, J.; Joe, I.; Kwon, D.; Kim, J.H.; Cho, D.; Lee, T.; Lee, C.; Park, H.; Hong, S. 5.6 A 1/2.65 in 44Mpixel CMOS image sensor with 0.7 µm pixels fabricated in advanced full-depth deep-trench isolation technology. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 104–106. [Google Scholar]
- Ihama, M.; Mitsui, T.; Nomura, K.; Maehara, Y.; Inomata, H.; Gotou, T.; Takeuchi, Y. Proposal of new organic CMOS image sensor for reduction in pixel size. Fujifilm Res. Dev. 2010, 55, 14–17. [Google Scholar]
- Kim, W.-T.; Park, C.; Lee, H.; Lee, I.; Lee, B.-G. A high full well capacity CMOS image sensor for space applications. Sensors 2019, 19, 1505. [Google Scholar] [CrossRef] [PubMed]
- Yokogawa, S.; Burgos, S.P.; Atwater, H.A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 2012, 12, 4349–4354. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Leem, D.-S.; Castrucci, J.S.; Park, K.-B.; Bulliard, X.; Kim, K.-S.; Jin, Y.W.; Lee, S.; Bender, T.P.; Park, S.Y. Green-sensitive organic photodetectors with high sensitivity and spectral selectivity using subphthalocyanine derivatives. ACS Appl. Mater. Interfaces 2013, 5, 13089–13095. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, B.; Mischok, A.; Benduhn, J.; Zeika, O.; Ullbrich, S.; Nehm, F.; Böhm, M.; Spoltore, D.; Fröb, H.; Körner, C. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption. Nat. Commun. 2017, 8, 15421. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, J.; Cho, E.; Lee, J.; Yun, D.-J.; Lee, D.; Kim, Y.; Ro, T.; Heo, C.-J.; Lee, G.H. The role of defects in organic image sensors for green photodiode. Sci. Rep. 2019, 9, 1745. [Google Scholar] [CrossRef] [PubMed]
- Armin, A.; Jansen-van Vuuren, R.D.; Kopidakis, N.; Burn, P.L.; Meredith, P. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 2015, 6, 6343. [Google Scholar] [CrossRef] [PubMed]
- Gelinck, G.H.; Kumar, A.; Moet, D.; van der Steen, J.-L.P.J.; van Breemen, A.J.J.M.; Shanmugam, S.; Langen, A.; Gilot, J.; Groen, P.; Andriessen, R.; et al. X-Ray Detector-on-Plastic With High Sensitivity Using Low Cost, Solution-Processed Organic Photodiodes. IEEE Trans. Electron Devices 2016, 63, 197–204. [Google Scholar] [CrossRef]
- Xu, X.; Kwon, H.; Gawlik, B.; Mohammadi Estakhri, N.; Alu, A.; Sreenivasan, S.; Dodabalapur, A. Enhanced photoresponse in metasurface-integrated organic photodetectors. Nano Lett. 2018, 18, 3362–3367. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ivanov, K.; Wang, Y.; Wang, L. A novel method based on two cameras for accurate estimation of arterial oxygen saturation. BioMedical Eng. OnLine 2015, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Blochwitz-Nimoth, J.; Pfeiffer, M.; Leo, K. Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure. J. Appl. Phys. 2003, 93, 838–844. [Google Scholar] [CrossRef]
- Terao, Y.; Sasabe, H.; Adachi, C. Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl. Phys. Lett. 2007, 90, 103515. [Google Scholar] [CrossRef]
- Wang, Z.S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater. 2007, 19, 1138–1141. [Google Scholar] [CrossRef]
- Seo, K.D.; Song, H.M.; Lee, M.J.; Pastore, M.; Anselmi, C.; De Angelis, F.; Nazeeruddin, M.K.; Gräetzel, M.; Kim, H.K. Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells. Dye. Pigment. 2011, 90, 304–310. [Google Scholar] [CrossRef]
- Bracher, P.J.; Schuster, D.I. Electron transfer in functionalized fullerenes. In Fullerenes: From Synthesis to Optoelectronic Properties; Springer: Berlin/Heidelberg, Germany, 2002; pp. 163–212. [Google Scholar]
- Li, W.; Yu, J.; Wang, T.; Jiang, Y.; Wei, B. Electroluminescence of organic light-emitting diodes with an ultra-thin layer of dopant. Mater. Sci. Eng. B 2008, 149, 77–81. [Google Scholar] [CrossRef]
- Shi, J.; Tang, C.W. Doped organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1997, 70, 1665–1667. [Google Scholar] [CrossRef]
- Chen, P.; Lei, Y.L.; Song, Q.L.; Zhang, Y.; Liu, R.; Zhang, Q.M.; Xiong, Z.H. Magnetoelectroluminescence in tris (8-hydroxyquinolato) aluminum-based organic light-emitting diodes doped with fluorescent dyes. Appl. Phys. Lett. 2009, 95, 213304. [Google Scholar] [CrossRef]
- Qashou, S.I.; Darwish, A.; Rashad, M.; Khattari, Z. AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N′-Dimethyl-3, 4, 9, 10-perylenedicarboximide (DMPDC). Phys. B Condens. Matter 2017, 525, 159–163. [Google Scholar] [CrossRef]
- Meiss, J.; Merten, A.; Hein, M.; Schuenemann, C.; Schäfer, S.; Tietze, M.; Uhrich, C.; Pfeiffer, M.; Leo, K.; Riede, M. Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuum-Deposited Organic Solar Cells. Adv. Funct. Mater. 2012, 22, 405–414. [Google Scholar] [CrossRef]
- Wei, Y.; Robey, S.W.; Reutt-Robey, J.E. TiOPc molecular dislocation networks as nanotemplates for C60 cluster arrays. J. Am. Chem. Soc. 2009, 131, 12026–12027. [Google Scholar] [CrossRef]
- Ahn, J.; Lee, K.; Kim, Y.; Jeong, H.; Kim, B.; Kim, H.; Park, J.; Jung, T.; Park, W.; Lee, T. 7.1 A 1/4-inch 8Mpixel CMOS image sensor with 3D backside-illuminated 1.12 μm pixel with front-side deep-trench isolation and vertical transfer gate. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 124–125. [Google Scholar]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie III, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi (B) 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Tansley, T.; Foley, C. Optical band gap of indium nitride. J. Appl. Phys. 1986, 59, 3241–3244. [Google Scholar] [CrossRef]
- Tumuluri, A.; Naidu, K.L.; Raju, K.J. Band gap determination using Tauc’s plot for LiNbO3 thin films. Int. J. ChemTech Res. 2014, 6, 3353–3356. [Google Scholar]
- Ismail, Y.A.; Soga, T.; Jimbo, T. The contribution of coumarin 6 in light harvesting and photocurrent of P3HT: PCBM bulk heterojunction solar cell. Sol. Energy Mater. Sol. Cells 2010, 94, 1406–1411. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, K.-S.; Shim, H.-S.; Moon, C.-K.; Jin, Y.W.; Kim, J.-J. A high performance semitransparent organic photodetector with green color selectivity. Appl. Phys. Lett. 2014, 105, 213301. [Google Scholar] [CrossRef]
- Sakomura, M.; Matsushiro, M.; Sawayama, M.; Miura, S.; Delgertsetseg, B.; Ganzorig, C.; Ueda, K. Effect of Bathocuproine Electron-transport Layer in Small-molecule Solar Cells with Laminated Top Electrode. Chem. Lett. 2013, 42, 1179–1181. [Google Scholar] [CrossRef]
- Engmann, S.; Barito, A.J.; Bittle, E.G.; Giebink, N.C.; Richter, L.J.; Gundlach, D.J. Higher order effects in organic LEDs with sub-bandgap turn-on. Nat. Commun. 2019, 10, 227. [Google Scholar] [CrossRef]
- Mutolo, K.L.; Mayo, E.I.; Rand, B.P.; Forrest, S.R.; Thompson, M.E. Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. J. Am. Chem. Soc. 2006, 128, 8108–8109. [Google Scholar] [CrossRef]
- Nakayama, K.i.; Pu, Y.J.; Kido, J. Surface-light-emitting transistors based on vertical-type metal-base organic transistors. J. Soc. Inf. Disp. 2011, 19, 602–607. [Google Scholar] [CrossRef]
- Ramar, M.; Yadav, V.; Srivastava, R.; Suman, C. Effect of titanyl phthalocyanine doping on opto-electrical properties of Alq 3 thin films. J. Mater. Sci. Mater. Electron. 2015, 26, 7165–7173. [Google Scholar] [CrossRef]
- Lim, S.-J.; Leem, D.-S.; Park, K.-B.; Kim, K.-S.; Sul, S.; Na, K.; Lee, G.H.; Heo, C.-J.; Lee, K.-H.; Bulliard, X. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Sci. Rep. 2015, 5, 7708. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Jang, J.N.; Yang, I.H.; Kwon, S.; Hong, M.; Kim, D.C.; Oh, K.S.; Yoo, S.J.; Lee, B.J. Development of inverted OLED with top ITO anode by plasma damage-free sputtering. Thin Solid Film. 2009, 517, 4019–4022. [Google Scholar] [CrossRef]
Sensitive Color | Structure | |
---|---|---|
In our study | Blue | Al/C_60/Coumarin 6/MoO3:Al/ITO |
Green | Al/MePTC/DMQA/MoO3:Al/ITO | |
Red | Al/TiOPc/ZnPc/MoO3:Al/ITO | |
NHK | Blue | ZnO TFT/Coumarin 30:C_60/Alq3/NTCDA/ITO |
Green | ZnO TFT/NN’-QA/Py-PTC/NTCDA/ITO | |
Red | ZnO TFT/ZnPc/TiOPc/Alq3/ITO | |
Samsung | Green | ITO/MoOx/DM-2,9-DMQA/SubPc/Al |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, U.-H.; Park, J.-H.; Choi, J.-H.; Lee, W.-G.; Park, J.-G. Hybrid Organic–Si C-MOSFET Image Sensor Designed with Blue-, Green-, and Red-Sensitive Organic Photodiodes on Si C-MOSFET-Based Photo Signal Sensor Circuit. Nanomaterials 2024, 14, 1066. https://doi.org/10.3390/nano14131066
Jeong U-H, Park J-H, Choi J-H, Lee W-G, Park J-G. Hybrid Organic–Si C-MOSFET Image Sensor Designed with Blue-, Green-, and Red-Sensitive Organic Photodiodes on Si C-MOSFET-Based Photo Signal Sensor Circuit. Nanomaterials. 2024; 14(13):1066. https://doi.org/10.3390/nano14131066
Chicago/Turabian StyleJeong, Ui-Hyun, Joo-Hyeong Park, Ji-Ho Choi, Woo-Guk Lee, and Jea-Gun Park. 2024. "Hybrid Organic–Si C-MOSFET Image Sensor Designed with Blue-, Green-, and Red-Sensitive Organic Photodiodes on Si C-MOSFET-Based Photo Signal Sensor Circuit" Nanomaterials 14, no. 13: 1066. https://doi.org/10.3390/nano14131066
APA StyleJeong, U. -H., Park, J. -H., Choi, J. -H., Lee, W. -G., & Park, J. -G. (2024). Hybrid Organic–Si C-MOSFET Image Sensor Designed with Blue-, Green-, and Red-Sensitive Organic Photodiodes on Si C-MOSFET-Based Photo Signal Sensor Circuit. Nanomaterials, 14(13), 1066. https://doi.org/10.3390/nano14131066