Degradation and Photocatalytic Properties of Nanocomposites
1. Introduction
2. An Overview of Published Articles
3. Conclusions
4. List of Contributions
- Cheng, K.; Heng, S.; Tieng, S.; David, F.; Dine, S.; Haddad, O.; Colbeau-Justin, C.; Traore, M.; Kanaev, A. Mixed Metal Oxide W-TiO2 Nanopowder for Environmental Process: Synergy of Adsorption and Photocatalysis. Nanomaterials 2024, 14, 765. https://doi.org/10.3390/nano14090765.
- Kalantari Bolaghi, Z.; Rodriguez-Seco, C.; Yurtsever, A.; Ma, D. Exploring the Remarkably High Photocatalytic Efficiency of Ultra-Thin Porous Graphitic Carbon Nitride Nanosheets. Nanomaterials 2024, 14, 103. https://doi.org/10.3390/nano14010103.
- Yousaf, A.B.; Imran, M.; Farooq, M.; Kausar, S.; Yasmeen, S.; Kasak, P. Graphitic Carbon Nitride Nanosheets Decorated with Zinc-Cadmium Sulfide for Type-II Heterojunctions for Photocatalytic Hydrogen Production. Nanomaterials 2023, 13, 2609. https://doi.org/10.3390/nano13182609.
- Mbuyazi, T.B.; Ajibade, P.A. Influence of Different Capping Agents on the Structural, Optical, and Photocatalytic Degradation Efficiency of Magnetite (Fe3O4) Nanoparticles. Nanomaterials 2023, 13, 2067. https://doi.org/10.3390/nano13142067.
- Song, D.; Li, M.; Liao, L.; Guo, L.; Liu, H.; Wang, B.; Li, Z. High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation. Nanomaterials 2023, 13, 1841. https://doi.org/10.3390/nano13121841.
- Zeng, Z.; Li, S.; Que, X.; Peng, J.; Li, J.; Zhai, M. Gamma Radiation Synthesis of Ag/P25 Nanocomposites for Efficient Photocatalytic Degradation of Organic Contaminant. Nanomaterials 2023, 13, 1666. https://doi.org/10.3390/nano13101666.
- Zavahir, S.; Elmakki, T.; Ismail, N.; Gulied, M.; Park, H.; Han, D.S. Degradation of Organic Methyl Orange (MO) Dye Using a Photocatalyzed Non-Ferrous Fenton Reaction. Nanomaterials 2023, 13, 639. https://doi.org/10.3390/nano13040639.
- Islam, M.A.; Akter, J.; Lee, I.; Shrestha, S.; Pandey, A.; Gyawali, N.; Hossain, M.M.; Hanif, M.A.; Jang, S.G.; Hahn, J.R. Facile Preparation of a Bispherical Silver–Carbon Photocatalyst and Its Enhanced Degradation Efficiency of Methylene Blue, Rhodamine B, and Methyl Orange under UV Light. Nanomaterials 2022, 12, 3959. https://doi.org/10.3390/nano12223959.
- Xu, Y.; Yu, J.; Long, J.; Tu, L.; Dai, W.; Yang, L. Z-Scheme Heterojunction of SnS2/Bi2WO6 for Photoreduction of CO2 to 100% Alcohol Products by Promoting the Separation of Photogenerated Charges. Nanomaterials 2022, 12, 2030. https://doi.org/10.3390/nano12122030.
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.H.; Cha, S.K.; Feng, W.; Xu, G.Q. Energy sources for road transport in the future. ACS Energy Lett. 2017, 2, 1334–1336. [Google Scholar] [CrossRef]
- Lewis, N.S.; Nocera, D.G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Yousaf, A.B.; Farooq, M.; Kasak, P. Enhanced Z-scheme visible light photocatalytic hydrogen production over a-Bi2O3/CZS heterostructure. Int. J. Hydrog. Energy 2018, 43, 4256–4264. [Google Scholar] [CrossRef]
- Rodriguez, C.A.; Modestino, M.A.; Psaltis, D.; Moser, C. Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 2014, 7, 3828–3835. [Google Scholar] [CrossRef]
- Bradley, J.S.; Schmid, G. (Eds.) Clusters and Colloids, From Theory to Applications; VCH: New York, NY, USA, 1994; p. 459. [Google Scholar]
- Bian, Z.F.; Zhu, J.; Wang, J.G.; Xiao, S.X.; Nuckolls, C.; Li, H.X. Multitemplates for the hierarchical synthesis of diverse inorganic materials. J. Am. Chem. Soc. 2012, 134, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Wilkinson, D.P.; Zhang, J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.J.; Huang, Y.; Chen, Y.S. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 2012, 45, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Hideyuki, K.; Yusuke, T.; Tohru, S.; Satoshi, K. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts. RSC Adv. 2014, 4, 21405–21409. [Google Scholar]
- Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.-W.; Lee, J.S. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, G.; Boucher, M.B.; Jewell, A.D.; Lewis, E.A.; Lawton, T.J.; Baber, A.E.; Tierney, H.L.; Flytzani, S.M.; Sykes, E.C. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Song, S.; Li, K.; Li, J.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. A ‘‘solid dual-ions-transformation” route to S, N Co-doped carbon nanotubes as highly efficient ‘‘metal-free” catalysts for organic reactions. Adv. Mater. 2016, 28, 10679–10683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313. [Google Scholar] [CrossRef]
- Bin Yousaf, A.; Zavahir, S.; Zeb, A.; Michalcova, A.; Kasak, P. Nanostructural synergism as Mn-N-C channels in manganese (IV) oxide and fluffy g-C3N4 layered composite with exceptional catalytic capabilities. J. Colloid Interface Sci. 2022, 610, 258–270. [Google Scholar] [CrossRef]
- Gao, H.; Yan, S.; Wang, J.; Huang, Y.; Wang, P.; Li, Z.; Zou, Z. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077–18084. [Google Scholar] [CrossRef]
- Yang, F.; Kuznietsov, V.; Lublow, M.; Merschjann, C.; Steigert, A.; Klaer, J.; Thomas, A.; Schedel-Niedrig, T. Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes. J. Mater. Chem. A 2013, 1, 6407–6415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasak, P. Degradation and Photocatalytic Properties of Nanocomposites. Nanomaterials 2024, 14, 1065. https://doi.org/10.3390/nano14131065
Kasak P. Degradation and Photocatalytic Properties of Nanocomposites. Nanomaterials. 2024; 14(13):1065. https://doi.org/10.3390/nano14131065
Chicago/Turabian StyleKasak, Peter. 2024. "Degradation and Photocatalytic Properties of Nanocomposites" Nanomaterials 14, no. 13: 1065. https://doi.org/10.3390/nano14131065
APA StyleKasak, P. (2024). Degradation and Photocatalytic Properties of Nanocomposites. Nanomaterials, 14(13), 1065. https://doi.org/10.3390/nano14131065