Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance
Abstract
:1. Introduction
2. BNNs for Thermally Conductive Polymeric Nanocomposites
3. Polymer/BNNs Composites of Enhanced In-Plane TC
4. Polymer/BNNs Composites of Enhanced Cross-Plane or Isotropic TC
5. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, A.L.; Shi, L. Emerging Challenges and Materials for Thermal Management of Electronics. Mater. Today 2014, 17, 163–174. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, M.; Huang, Q.; Weng, J.; Wang, Z.; Wang, J. A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures. Appl. Sci. 2019, 9, 2483. [Google Scholar] [CrossRef]
- Meziani, M.J.; Song, W.L.; Wang, P.; Lu, F.; Hou, Z.; Anderson, A.; Maimaiti, H.; Sun, Y.-P. Boron Nitride Nanomaterials for Thermal Management Applications. ChemPhysChem 2015, 16, 1339–1346. [Google Scholar] [CrossRef]
- Olabi, A.G.; Maghrabie, H.M.; Adhari, O.H.K.; Sayed, E.T.; Yousef, B.A.; Salameh, T.; Kamil, M.; Abdelkareem, M.A. Battery Thermal Management Systems: Recent Progress and Challenges. Int. J. Thermofluids 2022, 15, 100171. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Băjenescu, T.M. Miniaturisation of Electronic Components and the Problem of Devices Overheating. Electroteh. Electron. Autom. 2021, 69, 53–58. [Google Scholar] [CrossRef]
- Almubarak, A.A. The Effects of Heat on Electronic Components. Int. J. Eng. Res. Appl. 2017, 7, 52–57. [Google Scholar] [CrossRef]
- Ohring, M. Reliability and Failure of Electronic Materials and Devices; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Song, W.L.; Wang, W.; Veca, L.M.; Kong, C.Y.; Cao, M.S.; Wang, P.; Meziani, M.J.; Qian, H.; LeCroy, G.E.; Cao, L.; et al. Polymer/Carbon Nanocomposites for Enhanced Thermal Transport Properties–Carbon Nanotubes Versus Graphene Sheets as Nanoscale Fillers. J. Mater. Chem. 2012, 22, 17133–17139. [Google Scholar] [CrossRef]
- Qin, Z.; Li, M.; Flohn, J.; Hu, Y. Thermal Management Materials for Energy-Efficient and Sustainable Future Buildings. ChemComm 2021, 57, 12236–12253. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Liu, Y.; Shin, S.; Huang, S.; Ren, X.; Shu, W.; Cheng, J.; Tao, G.; Xu, W.; Chen, R.; et al. Emerging Materials and Strategies for Personal Thermal Management. Adv. Energy Mater. 2020, 10, 1903921. [Google Scholar] [CrossRef]
- Tan, C.; Dong, Z.; Li, Y.; Zhao, H.; Huang, X.; Zhou, Z.; Jiang, J.W.; Long, Y.Z.; Jiang, P.; Zhang, T.Y.; et al. A High Performance Wearable Strain Sensor with Advanced Thermal Management for Motion Monitoring. Nat. Commun. 2020, 11, 3530. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Shen, X.Q.; Chen, X.; Gan, J.M.; Wang, F.; Li, J.; Wang, X.L.; Shen, Q.D. Thermal Management of Chips by a Device Prototype Using Synergistic Effects of 3-D Heat-Conductive Network and Electrocaloric Refrigeration. Nat. Commun. 2022, 13, 5849. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.L.; Song, W.L.; Wang, P.; Meziani, M.J.; Kong, C.Y.; Anderson, A.; Maimaiti, H.; LeCroy, G.E.; Qian, H.; Sun, Y.-P. Flexible Graphene–Graphene Composites of Superior Thermal and Electrical Transport Properties. ACS Appl. Mater. Interfaces 2014, 6, 15026–15032. [Google Scholar] [CrossRef]
- Song, W.L.; Veca, L.M.; Anderson, A.; Cao, M.S.; Cao, L.; Sun, Y.-P. Light-Weight Nanocomposite Materials with Enhanced Thermal Transport Properties. Nanotechnol. Rev. 2012, 1, 363–376. [Google Scholar] [CrossRef]
- Veca, L.M.; Meziani, M.J.; Wang, W.; Wang, X.; Lu, F.; Zhang, P.; Lin, Y.; Fee, R.; Connell, J.W.; Sun, Y.-P. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity. Adv. Mater. 2009, 21, 2088–2092. [Google Scholar] [CrossRef]
- Song, W.L.; Wang, P.; Cao, L.; Anderson, A.; Meziani, M.J.; Farr, A.J.; Sun, Y.-P. Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angew. Chem. 2012, 124, 6604–6607. [Google Scholar] [CrossRef]
- Song, W.L.; Veca, L.M.; Kong, C.Y.; Ghose, S.; Connell, J.W.; Wang, P.; Cao, L.; Lin, Y.; Meziani, M.J.; Qian, H.; et al. Polymeric Nanocomposites with Graphene Sheets–Materials and Device for Superior Thermal Transport Properties. Polymer 2012, 53, 3910–3916. [Google Scholar] [CrossRef]
- Meziani, M.J.; Sheriff, K.; Parajuli, P.; Priego, P.; Bhattacharya, S.; Rao, A.M.; Quimby, J.L.; Qiao, R.; Wang, P.; Hwu, S.J.; et al. Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. ChemPhysChem 2022, 23, e202100645. [Google Scholar] [CrossRef]
- Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally Conductive Composite Films of Hexagonal Boron Nitride and Polyimide with Affinity-Enhanced Interfaces. J. Mater. Chem. 2010, 20, 2749–2752. [Google Scholar] [CrossRef]
- Tanimoto, M.; Yamagata, T.; Miyata, K.; Ando, S. Anisotropic Thermal Diffusivity of Hexagonal Boron Nitride-Filled Polyimide Films: Effects of Filler Particle Size, Aggregation, Orientation, and Polymer Chain Rigidity. ACS Appl. Mater. Interfaces 2013, 5, 4374–4382. [Google Scholar] [CrossRef]
- Tsai, M.H.; Tseng, I.H.; Chiang, J.C.; Li, J.J. Flexible Polyimide Films Hybrid with Functionalized Boron Nitride and Graphene Oxide Simultaneously to Improve Thermal Conduction and Dimensional Stability. ACS Appl. Mater. Interfaces 2014, 6, 8639–8645. [Google Scholar] [CrossRef] [PubMed]
- Zhi, C.; Bando, Y.; Terao, T.; Tang, C.; Kuwahara, H.; Golberg, D. Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Adv. Funct. Mater. 2009, 19, 1857–1862. [Google Scholar] [CrossRef]
- Zhi, C.; Xu, Y.; Bando, Y.; Golberg, D. Highly Thermo-Conductive Fluid with Boron Nitride Nanofillers. ACS Nano 2011, 5, 6571–6577. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhi, C.; Jiang, P.; Golberg, D.; Bando, Y.; Tanaka, T. Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Adv. Funct. Mater. 2013, 23, 1824–1831. [Google Scholar] [CrossRef]
- Fang, H.; Bai, S.L.; Wong, C.P. Thermal, Mechanical and Dielectric Properties of Flexible BN Foam and BN Nanosheets Reinforced Polymer Composites for Electronic Packaging Application. Compos. Part A Appl. Sci. Manuf. 2017, 100, 71–80. [Google Scholar] [CrossRef]
- Luo, W.; Wang, Y.; Hitz, E.; Lin, Y.; Yang, B.; Hu, L. Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Adv. Funct. Mater. 2017, 27, 1701450. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Tian, W.; Fan, X.; Yao, Y. Polymer Composites Based on Hexagonal Boron Nitride and Their Application in Thermally Conductive Composites. RSC Adv. 2018, 8, 21948–21967. [Google Scholar] [CrossRef] [PubMed]
- Guerra, V.; Wan, C.; McNally, T. Thermal Conductivity of 2D Nano-Structured Boron Nitride (BN) and Its Composites with Polymers. Prog. Mater. Sci. 2019, 100, 170–186. [Google Scholar] [CrossRef]
- Meng, W.; Huang, Y.; Fu, Y.; Wang, Z.; Zhi, C. Polymer Composites of Boron Nitride Nanotubes and Nanosheets. J. Mater. Chem. C 2014, 2, 10049–10061. [Google Scholar] [CrossRef]
- Zhi, C.; Bando, Y.; Tang, C.; Golberg, D. Boron Nitride Nanotubes. Mater. Sci. Eng. R Rep. 2010, 70, 92–111. [Google Scholar] [CrossRef]
- Pakdel, A.; Bando, Y.; Golberg, D. Nano Boron Nitride Flatland. Chem. Soc. Rev. 2014, 43, 934–959. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Puttegowda, M.; Jagadeesh, P.; Marwani, H.M.; Asiri, A.M.; Manikandan, A.; Khan, A.A.P.; Ashraf, G.M.; Rangappa, S.M.; Siengchin, S. Review on Nitride Compounds and its Polymer Composites: A Multifunctional Material. J. Mater. Res. Technol. 2022, 18, 2175–2193. [Google Scholar] [CrossRef]
- Aparna, A.; Sethulekshmi, A.S.; Jayan, J.S.; Saritha, A.; Joseph, K. Recent advances in boron nitride based hybrid polymer nanocomposites. Macromol. Mater. Eng. 2021, 306, 2100429. [Google Scholar] [CrossRef]
- Kumar, A.; Pal, D. Lattice Thermal Conductivity of Boron Nitride Crystals at Temperatures 1.5 to 300 K. Phys. Status Solidi B 1985, 129, 6488770. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, J.; Campbell, S.J.; Le Caer, G. Boron Nitride Nanotubes: Pronounced Resistance to Oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron Nitride Nanotubes and Nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Fennimore, A.M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, F.D.; Majumdar, A.; Zettl, A. Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes. Phys. Rev. Lett. 2006, 97, 085901. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Okawa, D.; Garcia, H.; Majumdar, A.; Zettl, A. Breakdown of Fourier’s Law in Nanotube Thermal Conductors. Phys. Rev. Lett. 2008, 101, 075903. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano 2014, 8, 1457–1462. [Google Scholar] [CrossRef]
- Li, L.H.; Xing, T.; Chen, Y.; Jones, R. Boron Nitride Nanosheets for Metal Protection. Adv. Mater. Interfaces 2014, 1, 1300132. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Kurashima, K.; Sato, T. Synthesis and Characterization of Ropes Made of BN Multiwalled Nanotubes. Scr. Mater. 2001, 44, 1561–1565. [Google Scholar] [CrossRef]
- Spriggs, G. 13.5 Properties of Diamond and Cubic Boron Nitride: 13 Hard Materials. In Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials; Springer: Berlin/Heidelberg, Germany, 2002; pp. 118–139. [Google Scholar]
- Wattanakul, K.; Manuspiya, H.; Yanumet, N. Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-Filled Epoxy Composite. J. Appl. Polym. Sci. 2011, 119, 3234–3243. [Google Scholar] [CrossRef]
- Hod, O. Graphite and Hexagonal Boron-Nitride Have the Same Interlayer Distance. Why? J. Chem. Theory Comput. 2012, 8, 1360–1369. [Google Scholar] [CrossRef]
- Lin, Y.; Connell, J.W. Advances in 2D Boron Nitride Nanostructures: Nanosheets, Nanoribbons, Nanomeshes, and Hybrids with Graphene. Nanoscale 2012, 4, 6908–6939. [Google Scholar] [CrossRef]
- Ishida, H.; Rimdusit, S. Very High Thermal Conductivity Obtained by Boron Nitride-Filled Polybenzoxazine. Thermochim. Acta 1998, 320, 177–186. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, D.; Jiang, X.; Bando, Y.; Wang, X. Thermal Conductivity Enhancement of Polymeric Composites Using Hexagonal Boron Nitride: Design Strategies and Challenges. Nanomaterials 2024, 14, 331. [Google Scholar] [CrossRef]
- Choukimath, M.C.; Banapurmath, N.R.; Riaz, F.; Patil, A.Y.; Jalawadi, A.R.; Mujtaba, M.A.; Shahapurkar, K.; Khan, T.M.Y.; Alsehli, M.; Soudagar, M.E.M.; et al. Experimental and Computational Study of Mechanical and Thermal Characteristics of h-BN and GNP Infused Polymer Composites for Elevated Temperature Applications. Materials 2022, 15, 5397. [Google Scholar] [CrossRef] [PubMed]
- Joy, J.; George, E.; Haritha, P.; Thomas, S.; Anas, S. An Overview of Boron Nitride Based Polymer Nanocomposites. J. Polym. Sci. 2020, 58, 3115–3141. [Google Scholar] [CrossRef]
- Tang, B.; Jiang, T.; Ge, F.; Cao, M.; Chang, S.; Yi, J.; Li, W.; Wang, L. Improved Thermal Conductivity and Thermomechanical Properties of Epoxy Nanocomposites with Branched Polyethyleneimine-Functionalized Hexagonal Boron Nitride Nanosheets. ChemistrySelect 2023, 8, e202204539. [Google Scholar] [CrossRef]
- Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron Nitride Nanomesh. Science 2004, 303, 217–220. [Google Scholar] [CrossRef]
- Zhu; Bando, Y.; Yin, L.; Golberg, D. Field Nanoemitters: Ultrathin BN Nanosheets Protruding from Si3N4 Nanowires. Nano Lett. 2006, 6, 2982–2986. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zou, J.; Liu, G.; Li, F.; Wang, Y.; Wang, L.; Yuan, X.L.; Sekiguchi, T.; Cheng, H.M.; Lu, G.Q. Novel Boron Nitride Hollow Nanoribbons. ACS Nano 2008, 2, 2183–2191. [Google Scholar] [CrossRef]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, A.G.; Lou, J.; Yakobson, B.I.; et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef]
- Yu, J.; Qin, L.; Hao, Y.; Kuang, S.; Bai, X.; Chong, Y.M.; Zhang, W.; Wang, E. Vertically Aligned Boron Nitride Nanosheets: Chemical Vapor Synthesis, Ultraviolet Light Emission, and Superhydrophobicity. ACS Nano 2010, 4, 414–422. [Google Scholar] [CrossRef]
- Yin, J.; Li, J.; Hang, Y.; Yu, J.; Tai, G.; Li, X.; Zhang, Z.; Guo, W. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications. Small 2016, 12, 2942–2968. [Google Scholar] [CrossRef]
- Wang, Z.; Meziani, M.J.; Patel, A.K.; Priego, P.; Wirth, K.; Wang, P.; Sun, Y.-P. Boron Nitride Nanosheets from Different Preparations and Correlations with Their Material Properties. Ind. Eng. Chem. Res. 2019, 58, 18644–18653. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Glavin, N.R.; Robinson, J.A. 2D Boron Nitride: Synthesis and Applications. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2016; Volume 95, pp. 101–147. [Google Scholar]
- Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C 2017, 5, 11992–12022. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Firestein, K.L.; Golberg, D.V. Fabrication and Application of BN Nanoparticles, Nanosheets and Their Nanohybrids. Nanoscale 2018, 10, 17477–17493. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J. Scalable Exfoliation and Dispersion of Two-Dimensional Materials-An Update. Phys. Chem. Chem. Phys. 2017, 19, 921–960. [Google Scholar] [CrossRef]
- Anderson, A.; Hou, Z.L.; Song, W.L.; Meziani, M.J.; Wang, P.; Lu, F.; Lee, J.; Xu, L.; Sun, Y.-P. Towards Nanostructured Boron Nitride Films. J. Mate. Sci. Mater. Electron. 2017, 28, 9048–9055. [Google Scholar] [CrossRef]
- An, L.; Yu, Y.; Cai, Q.; Mateti, S.; Li, L.H.; Chen, Y.I. Hexagonal Boron Nitride Nanosheets: Preparation, Heat Transport Property and Application as Thermally Conductive Fillers. Prog. Mater. Sci. 2023, 138, 101154. [Google Scholar] [CrossRef]
- Lee, D.; Lee, B.; Park, K.H.; Ryu, H.J.; Jeon, S.; Hong, S.H. Scalable Exfoliation Process for Highly Soluble Boron Nitride Nanoplatelets by Hydroxide-Assisted Ball Milling. Nano Lett. 2015, 15, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.S.; Lee, D.; Lee, S.P.; Kang, Y.G.; Kim, N.C.; Song, S.H. Enhancing the Mechanical and Thermal Properties of Boron Nitride Nanoplatelets/Elastomer Nanocomposites by Latex Mixing. RSC Adv. 2016, 6, 59970–59975. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.; Byun, S.; Paik, K.W.; Song, S.H. Novel Dielectric BN/Epoxy Nanocomposites with Enhanced Heat Dissipation Performance for Electronic Packaging. Compos. Part A Appl. Sci. Manuf. 2018, 107, 217–223. [Google Scholar] [CrossRef]
- Lei, W.; Mochalin, V.N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron Nitride Colloidal Solutions, Ultralight Aerogels and Freestanding Membranes Through One-Step Exfoliation and Functionalization. Nat. Commun. 2015, 6, 8849. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xiong, Z.; Hu, D.; Wu, G.; Liu, B.; Chen, P. Solid Exfoliation of Hexagonal Boron Nitride Crystals for the Synthesis of Few-Layer Boron Nitride Nanosheets. Chem. Lett. 2013, 42, 1415–1416. [Google Scholar] [CrossRef]
- Lei, W.; Liu, D.; Chen, Y. Highly Crumpled Boron Nitride Nanosheets as Adsorbents: Scalable Solvent-Less Production. Adv. Mater. Interfaces 2015, 2, 1400529. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Q.; Zhang, J.; Geng, R.; Tian, W.; Fan, X.; Yao, Y. One-Step in Situ Ball Milling Synthesis of Polymer-Functionalized Few-Layered Boron Nitride and Its Application in High Thermally Conductive Cellulose Composites. ACS Appl. Nano Mater. 2018, 1, 4875–4883. [Google Scholar] [CrossRef]
- Li, L.H.; Chen, Y.; Behan, G.; Zhang, H.; Petravic, M.; Glushenkov, A.M. Large-Scale Mechanical Peeling of Boron Nitride Nanosheets by Low-Energy Ball Milling. J. Mater. Chem. 2011, 21, 11862–11866. [Google Scholar] [CrossRef]
- Chen, S.; Xu, R.; Liu, J.; Zou, X.; Qiu, L.; Kang, F.; Liu, B.; Cheng, H.M. Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation. Adv. Mater. 2019, 31, 1804810. [Google Scholar] [CrossRef]
- Yao, Y.; Lin, Z.; Li, Z.; Song, X.; Moon, K.S.; Wong, C.P. Large-Scale Production of Two-Dimensional Nanosheets. J. Mater. Chem. 2012, 22, 13494–13499. [Google Scholar] [CrossRef]
- Fan, D.; Feng, J.; Liu, J.; Gao, T.; Ye, Z.; Chen, M.; Lv, X. Hexagonal Boron Nitride Nanosheets Exfoliated by Sodium Hypochlorite Ball Mill and Their Potential Application in Catalysis. Ceram. Int. 2016, 42, 7155–7163. [Google Scholar] [CrossRef]
- Ji, D.; Wang, Z.; Zhu, Y.; Yu, H. One-Step Environmentally Friendly Exfoliation and Functionalization of Hexagonal Boron Nitride by β-Cyclodextrin-Assisted Ball Milling. Ceram. Int. 2020, 46, 21084–21089. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhao, H.R.; Yu, H.B. High-Yield Synthesis of Extremely High Concentrated and Few-Layered Boron Nitride Nanosheet Dispersions. 2D Mater. 2018, 5, 045015. [Google Scholar] [CrossRef]
- Du, M.; Wu, Y.; Hao, X. A Facile Chemical Exfoliation Method to Obtain Large Size Boron Nitride Nanosheets. CrystEngComm 2013, 15, 1782–1786. [Google Scholar] [CrossRef]
- Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. A High-Yield Ionic Liquid-Promoted Synthesis of Boron Nitride Nanosheets by Direct Exfoliation. Chem. Commun. 2015, 51, 12068–12071. [Google Scholar] [CrossRef] [PubMed]
- García, G.; Atilhan, M.; Aparicio, S. In Silico Rational Design of Ionic Liquids for the Exfoliation and Dispersion of Boron Nitride Nanosheets. Phys. Chem. Chem. Phys. 2016, 18, 1212–1224. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Chen, C.; Ye, Y.; Zeng, H.; Qu, H.; Liu, J.; Zhou, X.; Long, S.; Xie, X. Highly Thermally Conductive Flame Retardant Epoxy Nanocomposites with Multifunctional Ionic Liquid Flame Retardant-Functionalized Boron Nitride Nanosheets. J. Mater. Chem. A 2018, 6, 20500–20512. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; She, X.; Song, Y.; Qian, J.; Wang, Y.; Xu, H.; Li, H.; Yan, Q. Rapid Synthesis of Ultrathin 2D Materials Through Liquid-Nitrogen and Microwave Treatments. J. Mater. Chem. A 2019, 7, 5209–5213. [Google Scholar] [CrossRef]
- An, L.; Gu, R.; Zhong, B.; Yu, Y.; Zhang, J. Water-Icing-Triggered Scalable and Controllable Exfoliation of Hexagonal Boron Nitride Nanosheets. Cell Rep. Phys. Sci. 2022, 3, 100941. [Google Scholar] [CrossRef]
- Belling, J.M.; Unsworth, J. Modified Angström’s Method for Measurement of Thermal Diffusivity of Materials with Low Conductivity. Rev. Sci. Instrum. 1987, 58, 997–1002. [Google Scholar] [CrossRef]
- dos Santos, W.N.; dos Santos, J.N.; Mummery, P.; Wallwork, A. Thermal Diffusivity of Polymers by Modified Angström Method. Polym. Test. 2010, 29, 107–112. [Google Scholar] [CrossRef]
- Ishii, T.; Sato, T.; Sekikawa, Y.; Iwata, M. Growth of Whiskers of Hexagonal Boron Nitride. J. Cryst. Growth 1981, 52, 285–289. [Google Scholar] [CrossRef]
- General Information in Erich NETZSCH GmbH & Co. Holding KG. LFA 467 HyperFlash®–Light Flash Apparatus. Available online: https://analyzing-testing.netzsch.com/en-US/products/thermal-diffusivity-and-conductivity/lfa-467-hyper-flash-light-flash-apparatus (accessed on 1 May 2024).
- General Information in Hot Disk AB. Available online: https://www.hotdiskinstruments.com/ (accessed on 1 May 2024).
- General Information in ULVAC Technologies, I. Thermal Diffusivity Measurement System. Available online: https://www.ulvac.com/components/ThermalInstruments/Thermoelectric-Testers/LaserPIT (accessed on 1 May 2024).
- General Information in Bethel Co., Ltd. Thermowave Analyzer TA. Available online: https://hrd-thermal.jp/en/apparatus/ta.html.Instruments/Thermoelectric-Testers/LaserPIT (accessed on 1 May 2024).
- Liu, B.; Zeng, J.; Li, P.; Li, J.; Wang, B.; Xu, J.; Gao, W.; Chen, K. Flexible Nanocellulose-Based Layered Films by Crosslinking Phosphorus Lignin Nanoparticles and Functionalized Boron Nitride Nanosheets for Flame-Resistant and Thermal Conductivity Applications. J. Mater. Chem. A 2023, 11, 24057–24071. [Google Scholar] [CrossRef]
- Tu, H.; Xie, K.; Lin, X.; Zhang, R.; Chen, F.; Fu, Q.; Duan, B.; Zhang, L. Superior Strength and Highly Thermoconductive Cellulose/Boron Nitride Film by Stretch-Induced Alignment. J. Mater. Chem. A 2021, 9, 10304–10315. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.; Chen, M.; Wu, L. Simultaneous Exfoliation and Functionalization of Large-Sized Boron Nitride Nanosheets for Enhanced Thermal Conductivity of Polymer Composite Film. Chem. Eng. J. 2022, 442, 136237. [Google Scholar] [CrossRef]
- Sun, T.; Cao, W.; Zhao, K.; Wang, X.; Wang, Z.; Gao, G.; Ye, Z.; Zhao, K.; Su, Z.; Dai, B.; et al. Bio-Inspired Robust and Highly Thermal Conductive BNNS/PBO Nanofiber Composite Films with Excellent Thermal Stability, Wear Resistance, and Adjustable Photothermal Properties. Chem. Eng. J. 2023, 474, 145916. [Google Scholar] [CrossRef]
- Wang, D.; Ren, S.; Chen, J.; Li, Y.; Wang, Z.; Xu, J.; Jia, X.; Fu, J. Healable, highly Thermal Conductive, Flexible Polymer Composite with Excellent Mechanical Properties and Multiple Functionalities. Chem. Eng. J. 2022, 430, 133163. [Google Scholar] [CrossRef]
- Chen, K.; Peng, L.; Fang, Z.; Lin, X.; Sun, C.; Qiu, X. Dispersing Boron Nitride Nanosheets with Carboxymethylated Cellulose Nanofibrils for Strong and Thermally Conductive Nanocomposite Films with Improved Water-Resistance. Carbohydr. Polym. 2023, 321, 121250. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, H.; Wang, Z.; Han, X.; Zhao, Z.; Guo, Y.; Liu, W.; Wang, J.; Zhao, T. Construction of 3D Interconnected and Aligned Boron Nitride Nanosheets Structures in Phthalonitrile Composites with High Thermal Conductivity. Compos. Sci. Technol. 2022, 220, 109289. [Google Scholar] [CrossRef]
- Han, G.; Zhang, D.; Kong, C.; Zhou, B.; Shi, Y.; Feng, Y.; Liu, C.; Wang, D.Y. Flexible, Thermostable and Flame-Resistant Epoxy-Based Thermally Conductive Layered Films with Aligned Ionic Liquid-Wrapped Boron Nitride Nanosheets via Cyclic Layer-By-Layer Blade-Casting. Chem. Eng. J. 2022, 437, 135482. [Google Scholar] [CrossRef]
- Tu, H.; Li, X.; Xie, K.; Zhang, J.; Liu, Y.; Lin, X.; Zhang, R.; Duan, B. High Strength and Biodegradable Dielectric Film with Synergistic Alignment of Chitosan Nanofibrous Networks and BNNSs. Carbohydr. Polym. 2023, 299, 120234. [Google Scholar] [CrossRef] [PubMed]
- Gou, B.; Xu, H.; Zhou, J.; Xie, C.; Wang, R. Polymer-Based Nanocomposites with Ultra-High in-Plane Thermal Conductivity via Highly Oriented Boron Nitride Nanosheets. Polym. Compos. 2022, 43, 2341–2349. [Google Scholar] [CrossRef]
- Yang, J.; Cao, C.; Qiao, W.; Qiao, J.; Gao, H.; Bai, W.; Li, Z.; Wang, P.; Tang, C.; Xue, Y. Chemo-Mechanically Exfoliated Boron Nitride Nanosheet/Poly (Vinyl Alcohol) Composites as Efficient Heat Dissipation Components. ACS Appl. Nano Mater. 2022, 5, 15600–15610. [Google Scholar] [CrossRef]
- Yan, Q.; Dai, W.; Gao, J.; Tan, X.; Lv, L.; Ying, J.; Lu, X.; Lu, J.; Yao, Y.; Wei, Q.; et al. Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS Nano 2021, 15, 6489–6498. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yu, Z.; Mohideen, M.M.; Ge, J.; Lv, X.; Yao, M.; Xie, Z.; Wang, C.; Hu, P.; Liu, Y. Constructing Hierarchical Polymer Nanocomposites with Strongly Enhanced Thermal Conductivity. ACS Appl. Mater. Interfaces 2023, 15, 42900–42911. [Google Scholar] [CrossRef]
- Du, P.Y.; Wang, Z.X.; Ren, J.W.; Zhao, L.H.; Jia, S.L.; Jia, L.C. Scalable Polymer-Infiltrated Boron Nitride Nanoplatelet Films with High Thermal Conductivity and Electrical Insulation for Thermal Management. ACS Appl. Electron. Mater. 2022, 4, 4622–4631. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Chen, J.; Guo, Y.; Jiang, P.; Gao, F.; Bao, H.; Huang, X. Thermally Conductive but Electrically Insulating Polybenzazole Nanofiber/Boron Nitride Nanosheets Nanocomposite Paper for Heat Dissipation of 5G Base Stations and Transformers. ACS Nano 2022, 16, 14323–14333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.H.; Wang, L.; Jin, Y.F.; Ren, J.-W.; Wang, Z.; Jia, L.C. Simultaneously Improved Thermal Conductivity and Mechanical Properties of Boron Nitride Nanosheets/Aramid Nanofiber Films by Constructing Multilayer Gradient Structure. Compos. Part B Eng. 2022, 229, 109454. [Google Scholar] [CrossRef]
- Hu, D.; Liu, H.; Guo, Y.; Yang, M.; Ma, W. Interfacial Design of Nanocellulose/Boron Nitride Nanosheets Composites via Calcium Ion Cross-Linking for Enhanced Thermal Conductivity and Mechanical Robustness. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106970. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, C.; Wang, R.; Xu, H.; Gou, B.; Li, L. Enhanced In-Plane Thermal Conductivity of PP Composites With High Orientation and Rational Layered Distribution of BNNS. Mater. Today Commun. 2022, 31, 103507. [Google Scholar] [CrossRef]
- Nie, X.; Sang, X.; Fu, Y.; Shi, X.; Zheng, K.; Ma, Y. Exfoliation of Hexagonal Boron Nitride Assisted With Hierarchical Ionic Fragments by Ball-Milling for Achieving High Thermally Conductive Polymer Nanocomposite. Polym. Compos. 2022, 43, 946–954. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Niu, H.; Wu, L.; He, X.; Xu, T.; Wang, N.; Yao, Y. An Electrospinning–Electrospraying Technique for Connecting Electrospun Fibers to Enhance the Thermal Conductivity of Boron Nitride/Polymer Composite Films. Compos. Part B Eng. 2022, 230, 109505. [Google Scholar] [CrossRef]
- Yu, B.; Fan, J.; He, J.; Liu, Y.; Wang, R.; Qi, K.; Han, P.; Luo, Z. Boron Nitride Nanosheets: Large-Scale Exfoliation in NaoH-LiCl Solution and Their Highly Thermoconductive Insulating Nanocomposite Paper With PI via Electrospinning-Electrospraying. J. Alloys Compd. 2023, 930, 167303. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Liu, X.; Fan, Y.; He, A.; Nie, H. Enhancing Thermal Conductivity in Polymer Composites through Molding-Assisted Orientation of Boron Nitride. Polymers 2024, 16, 1169. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ruan, K.; Gu, J. Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@ Boron Nitride Nanosheets and Aramid Nanofibers. Angew. Chem. Int. Ed. 2023, 62, e202216093. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.H.; Kwon, Y.S.; Lee, J.S.; Jeong, Y.G. Enhanced Mechanical and Anisotropic Thermal Conductive Properties of Polyimide Nanocomposite Films Reinforced with Hexagonal Boron Nitride Nanosheets. J. Appl. Polym. Sci. 2021, 138, 50324. [Google Scholar] [CrossRef]
- Kwon, O.H.; Ha, T.; Kim, D.G.; Kim, B.G.; Kim, Y.S.; Shin, T.J.; Koh, W.G.; Lim, H.S.; Yoo, Y. Anisotropy-Driven High Thermal Conductivity in Stretchable Poly (Vinyl Alcohol)/Hexagonal Boron Nitride Nanohybrid Films. ACS Appl. Mater. Interfaces 2018, 10, 34625–34633. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano 2018, 13, 337–345. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, X.; Pan, D.; Zhang, W.; Shang, Y.; Su, F.; Ji, Y.; Liu, C.; Shen, C. Highly Thermal Conductive Poly (Vinyl Alcohol) Composites with Oriented Hybrid Networks: Silver Nanowire Bridged Boron Nitride Nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 32286–32294. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J.-B.; Song, B.; Wong, C.P. Polymer Composite With Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ni, Y.; Kong, X.; Gao, D.; Wang, Y.; Hu, T.; Zhang, L. Mussel-Inspired Modification of Boron Nitride for Natural Rubber Composites With High Thermal Conductivity and Low Dielectric Constant. Compos. Sci. Technol. 2019, 177, 18–25. [Google Scholar] [CrossRef]
- Chen, J.; Wei, H.; Bao, H.; Jiang, P.; Huang, X. Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites With Overlapping BN Nanosheets for Thermal Management Applications. ACS Appl. Mater. Interfaces 2019, 11, 31402–31410. [Google Scholar] [CrossRef]
- Yu, C.; Gong, W.; Tian, W.; Zhang, Q.; Xu, Y.; Lin, Z.; Hu, M.; Fan, X.; Yao, Y. Hot-Pressing Induced Alignment of Boron Nitride in Polyurethane for Composite Films with Thermal Conductivity over 50 Wm−1K−1. Compos. Sci. Technol. 2018, 160, 199–207. [Google Scholar] [CrossRef]
- Teng, C.; Su, L.; Chen, J.; Wang, J. Flexible, Thermally Conductive Layered Composite Films From Massively Exfoliated Boron Nitride Nanosheets. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105498. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, X.; Shang, Y.; Xu, P.; Pan, D.; Su, F.; Ji, Y.; Feng, Y.; Liu, Y.; Liu, C. Highly Thermally Conductive Polyvinyl Alcohol/Boron Nitride Nanocomposites with Interconnection Oriented Boron Nitride Nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Fei, T.; Han, S.; Xia, C.; Shan, Z.; Jiang, J. Highly Thermally Conductive Polystyrene/Polypropylene/Boron Nitride Composites with 3D Segregated Structure Prepared by Solution-Mixing and Hot-Pressing Method. Chem. Eng. J. 2020, 385, 123829. [Google Scholar] [CrossRef]
- Nwanonenyi, C.C.; Patel, A.K.; Wang, P.; Wang, Z.; Wirth, K.; Zaharias, M.; Sun, Y.-P.; Meziani, M.J. Supercritical Fluid Processing of Boron Nitride Nanosheets for Polymeric Nanocomposites of Superior Thermal Transport Properties. J. Supercrit. Fluids 2021, 167, 105035. [Google Scholar] [CrossRef]
- Wang, Z.; Priego, P.; Meziani, M.J.; Wirth, K.; Bhattacharya, S.; Rao, A.; Wang, P.; Sun, Y.-P. Dispersion of High-Quality Boron Nitride Nanosheets in Polyethylene for Nanocomposites of Superior Thermal Transport Properties. Nanoscale Adv. 2020, 2, 2507–2513. [Google Scholar] [CrossRef]
- Mazumder, M.R.H.; Mathews, L.D.; Mateti, S.; Salim, N.V.; Parameswaranpillai, J.; Govindaraj, P.; Hameed, N. Boron Nitride Based Polymer Nanocomposites for Heat Dissipation and Thermal Management Applications. Appl. Mate. Today 2022, 29, 101672. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, C.; Zeng, X.; Ren, L.; Sun, R.; Xu, J. Recent Progress in Thermally Conductive Polymer/Boron Nitride Composites by Constructing Three-Dimensional Networks. Compos. Commun. 2021, 24, 100650. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, Y.; Wei, S.; Wang, M.; Li, P.; Li, H.; Zhang, X. Vacuum Filtration-Assisted Design of Hierarchical Structure in Polyimide-BN Composite Films: Toward Enhanced Thermal Conductivity, Low Dielectric and Electrical Insulation. Ceram. Inter. 2024, 50, 19228–19236. [Google Scholar] [CrossRef]
- Lin, J.; Dong, J.; Chen, B.; Liang, J.; Zhang, H.; He, Z.; He, J.; Zhong, R.; Liang, X.; Hu, D. Controllable Exfoliation of Hexagonal Boron Nitride and Tailored Three-Dimensional Network for Highly Thermally Conductive Polymer Composites. J. Appl. Polym. Sci. 2024, 141, e55094. [Google Scholar] [CrossRef]
- Viswanathan, V.; Laha, T.; Balani, K.; Agarwal, A.; Seal, S. Challenges and Advances in Nanocomposite Processing Techniques. Mater. Sci. Eng. R Rep. 2006, 54, 121–285. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, Q.; Mateti, S.; Bhattacharjee, A.; Yu, Y.; Zeng, X.; Sun, R.; Huang, S.; Chen, Y.I. Recent Research Advances in Hexagonal Boron Nitride/Polymer Nanocomposites with Isotropic Thermal Conductivity. Adv. Nanocompos. 2024, 1, 144–156. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.; Sun, B.; Wang, Y.; Zhu, Y.; Jiang, P. Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials. ACS Appl. Mater. Interfaces 2017, 9, 30909–30917. [Google Scholar] [CrossRef] [PubMed]
- Pornea, A.G.M.; Choi, K.-I.; Jung, J.-H.; Hanif, Z.; Kwak, C.; Kim, J. Enhancement of Isotropic Heat Dissipation of Polymer Composites by Using Ternary Filler Systems Consisting of Boron Nitride Nanotubes, h-BN, and Al2O3. ACS Omega 2023, 8, 24454–24466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, M.; Miao, Z.; Zhao, Y.; Song, Y.; Yu, J.; Wu, Z.; Li, J.; Wang, W.; Li, Y.; et al. Ice-Templated Graphene In-Situ Loaded Boron Nitride Aerogels for Polymer Nanocomposites with High Thermal Management Capability. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107005. [Google Scholar] [CrossRef]
- Gonzalez-Ortiz, D.; Salameh, C.; Bechelany, M.; Miele, P. Nanostructured Boron Nitride–Based Materials: Synthesis and Applications. Mater. Today Adv. 2020, 8, 100–107. [Google Scholar] [CrossRef]
- Lei, C.; Xie, Z.; Wu, K.; Fu, Q. Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Adv. Mater. 2021, 33, 2103495. [Google Scholar] [CrossRef]
- Zeng, X.; Yao, Y.; Gong, Z.; Wang, F.; Sun, R.; Xu, J.; Wong, C.P. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement. Small 2015, 11, 6205–6213. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, Z.; Hoo, S.A.; Tipnis, V.; Wang, R.; Mitevski, I.; Hitchcock, D.; Simmons, K.L.; Sun, Y.-P.; Sarntinoranont, M.; et al. Sequential Dual Alignments Introduce Synergistic Effect on Hexagonal Boron Nitride Platelets for Superior Thermal Performance. Adv. Mater. 2024, 36, 2314097. [Google Scholar] [CrossRef]
- Zhao, N.; Li, J.; Wang, W.; Gao, W.; Bai, H. Isotropically Ultrahigh Thermal Conductive Polymer Composites by Assembling Anisotropic Boron Nitride Nanosheets Into a Biaxially Oriented Network. ACS Nano 2022, 16, 18959–18967. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.C.; Wang, Z.X.; Wang, L.; Zeng, J.F.; Du, P.Y.; Yue, Y.-F.; Zhao, L.H.; Jia, S.L. Self-Standing Boron Nitride Bulks Enabled by Liquid Metals for Thermal Management. Mater. Horiz. 2023, 10, 5656–5665. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhang, X.; Wang, T.; Zhang, H.; Li, Y.; Bao, H.; Chen, M.; Wu, L. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. Nano-Micro Lett. 2023, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, Z.; Li, X.; Hu, J.; Liao, Y.; Liu, Y.; Li, L.; Wei, S.; Li, Z. Improved Out-of-Plane Thermal Conductivity of Boron Nitride Nanosheet-Filled Polyamide 6/Polyethylene Terephthalate Composites by a Rapid Solidification Method. Mater. Adv. 2023, 4, 1490–1501. [Google Scholar] [CrossRef]
- Jiang, H.; Mateti, S.; Cai, Q.; Shao, H.; Huang, S.; Wu, Z.S.; Zhi, C.; Chen, Y.I. Quasi-Isotropic Thermal Conductivity of Polymer Films Enhanced by Binder-Free Boron Nitride Spheres. Compos. Sci. Technol. 2022, 230, 109769. [Google Scholar] [CrossRef]
- Mun, H.J.; Park, J.Y.; Lim, M.; Cho, H.B.; Choa, Y.H. Preparation of h-BN Microspheres for Nanocomposites with High Through-Plane Thermal Conductivity. J. Am. Ceram. Soc. 2023, 106, 7240–7250. [Google Scholar] [CrossRef]
- Zuo, S.; Li, M.; Xie, S.; Luo, J.; Xu, L.; Shi, Y.; Lan, N.; Zhou, L.; Yu, J.; Li, X.; et al. Enhanced Out-of-Plane Thermal Conductivity of Polyimide Composite Films by Adding Hollow Cube-Like Boron Nitride. Ceram. Int. 2023, 49, 12615–12624. [Google Scholar] [CrossRef]
- He, Y.; Kuang, F.; Che, Z.; Sun, F.; Zheng, K.; Zhang, J.; Cao, X.; Ma, Y. Achieving High Out-of-Plane Thermal Conductivity for Boron Nitride Nano Sheets/Epoxy Composite Films by Magnetic Orientation. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106933. [Google Scholar] [CrossRef]
- Yu, H.; Guo, P.; Qin, M.; Han, G.; Chen, L.; Feng, Y.; Feng, W. Highly Thermally Conductive Polymer Composite Enhanced by Two-Level Adjustable Boron Nitride Network with Leaf Venation Structure. Compos. Sci. Technol. 2022, 222, 109406. [Google Scholar] [CrossRef]
- Jang, W.; Lee, S.; Kim, N.R.; Koo, H.; Yu, J.; Yang, C.-M. Eco-Friendly and Scalable Strategy to Design Electrically Insulating Boron Nitride/Polymer Composites with High Through-Plane Thermal Conductivity. Compos. Part B Eng. 2023, 248, 110355. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Lei, Z.; Chen, Z. Electrostatic Flocking Assisted Aligned Boron Nitride Platelets Scaffold for Enhancing the Through-Plane Thermal Conductivity of Flexible Thermal Interface Materials. Ceram. Int. 2023, 49, 22623–22629. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, A.; Wei, Z.; Zhao, Z.; Cong, H.; Yan, C. Magnetic-Induced Dynamically Enhanced In-Plane or Out-of-Plane Thermal Conductivity of BN/Ag NWs@ Ni/Epoxy Composites. Ceram. Int. 2023, 49, 30248–30256. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z.; Li, L.; Zhang, Y.; Li, J. Internal Oriented Strategy of the hBN Composite Resin With Enhanced In-Plane or Through-Plane Thermal Conductivity via 3D Printing. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107638. [Google Scholar] [CrossRef]
- Chi, H.; Liu, D.; Ma, C.; Song, M.; Zhang, P.; Dai, P. Simultaneously Enhanced In-Plane and Out-of-Plane Thermal Conductivity of a PI Composite Film by Tetraneedle-Like ZnO Whiskers and BN Nanosheets. ACS Appl. Polym. Mater. 2023, 5, 6909–6919. [Google Scholar] [CrossRef]
- Liu, D.; Chi, H.; Ma, C.; Song, M.; Zhang, P.; Dai, P. Improving In-Plane and Out-of-Plane Thermal Conductivity of Polyimide/Boron Nitride Film with Reduced Graphene Oxide by a Moving Magnetic Field Induction. Compos. Sci. Technol. 2022, 220, 109292. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Wang, J.; Yang, G.; Li, M.; Wu, G. The Investigation of the Effect of Filler Sizes in 3D-BN Skeletons on Thermal Conductivity of Epoxy-Based Composites. Nanomaterials 2022, 12, 446. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced Through-Plane Thermal Conductivity of Boron Nitride/Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 25–31. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, J.; Ren, L.; Yao, Y.; Wang, M.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.-P. Nacre-Inspired Polymer Composites With High Thermal Conductivity and Enhanced Mechanical Strength. Compos. Part A Appl. Sci. Manuf. 2019, 121, 92–99. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Wang, H.; Zhao, F.; Zhang, D.; Chen, Y. Improvement in Thermal Conductivity of Through-Plane Aligned Boron Nitride/Silicone Rubber Composites. Mater. Des. 2019, 165, 107580. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Yu, C.; Li, Q.; Li, Z.; Li, C.; Lu, H.; Zhang, Q.; Zhao, J.; Hu, M.; et al. A Facile Method to Prepare Flexible Boron Nitride/Poly (Vinyl Alcohol) Composites with Enhanced Thermal Conductivity. Compos. Sci. Technol. 2017, 149, 41–47. [Google Scholar] [CrossRef]
- Yu, J.; Mo, H.; Jiang, P. Polymer/Boron Nitride Nanosheet Composite with High Thermal Conductivity and Sufficient Dielectric Strength. Polym. Adv. Technol. 2015, 26, 514–520. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P. 3D Vertically Aligned BNNs Network with Long-Range Continuous Channels for Achieving a Highly Thermally Conductive Composite. ACS Appl. Mater. Interfaces 2019, 11, 28943–28952. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Duan, B.; Li, L.; Xie, B.; Huang, M.; Luo, X. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets. ACS Appl. Mater. Interfaces 2015, 7, 13000–13006. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Huang, Y.F.; Lei, J.; Zhu, L.; Li, Z.M. Enhanced Thermal Conductivity of Polyethylene/Boron Nitride Multilayer Sheets Through Annealing. Compos. Part A Appl. Sci. Manuf. 2018, 107, 135–143. [Google Scholar] [CrossRef]
- Morishita, T.; Okamoto, H. Facile Exfoliation and Noncovalent Superacid Functionalization of Boron Nitride Nanosheets and Their Use for Highly Thermally Conductive and Electrically Insulating Polymer Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 27064–27073. [Google Scholar] [CrossRef]
- Xiao, C.; Guo, Y.; Tang, Y.; Ding, J.; Zhang, X.; Zheng, K.; Tian, X. Epoxy Composite With Significantly Improved Thermal Conductivity by Constructing a Vertically Aligned Three-Dimensional Network of Silicon Carbide Nanowires/Boron Nitride Nanosheets. Compos. Part B Eng. 2020, 187, 107855. [Google Scholar] [CrossRef]
- Pan, C.; Kou, K.; Zhang, Y.; Li, Z.; Wu, G. Enhanced Through-Plane Thermal Conductivity of PtFe Composites with Hybrid Fillers of Hexagonal Boron Nitride Platelets and Aluminum Nitride Particles. Compos. Part B Eng. 2018, 153, 1–8. [Google Scholar] [CrossRef]
- Wu, F.; Chen, S.; Tang, X.; Fang, H.; Tian, H.; Li, D.; Peng, X. Thermal Conductivity of Polycaprolactone/Three-Dimensional Hexagonal Boron Nitride Composites and Multi-Orientation Model Investigation. Compos. Sci. Technol. 2020, 197, 108245. [Google Scholar] [CrossRef]
- He, H.; Peng, W.; Liu, J.; Chan, X.Y.; Liu, S.; Lu, L.; Le Ferrand, H. Microstructured BN Composites with Internally Designed High Thermal Conductivity Paths for 3D Electronic Packaging. Adv. Mater. 2022, 34, 2205120. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Liu, Y.; Raghavan, S.; Moon, K.S.; Sitaraman, S.K.; Wong, C.P. Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640. [Google Scholar] [CrossRef]
- Kim, K.; Ju, H.; Kim, J. Vertical Particle Alignment of Boron Nitride and Silicon Carbide Binary Filler System for Thermal Conductivity Enhancement. Compos. Sci. Technol. 2016, 123, 99–105. [Google Scholar] [CrossRef]
- Liang, Z.; Pei, Y.; Chen, C.; Jiang, B.; Yao, Y.; Xie, H.; Jiao, M.; Chen, G.; Li, T.; Yang, B.; et al. General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment. ACS Nano 2019, 13, 12653–12661. [Google Scholar] [CrossRef]
- Lee, S.; Park, D.; Cho, Y.; Kim, J. Vertically-Aligned Boron Nitride Composite as a Highly Thermally Conductive Material Using Magnetic Field-Assisted Three-Dimensional Printing. Ceram. Int. 2023, 49, 7050–7056. [Google Scholar] [CrossRef]
Polymer a | Type of Fillers b | Exfoliation and Fillers Synthesis Method | Composites Fabrication Technique | Loading | In-Plane TC (Wm−1K−1) c | Cross-Plane TC (Wm−1K−1) c | Method d | Ref. |
---|---|---|---|---|---|---|---|---|
TOCNF/PDA (1) | BNNs | Ball milling | Vacuum filtration and hot pressing | 50 wt% | 23.49 | 2.25 | LFA | [91] |
Cellulose | BNNs | Sonication and ball milling | Gelation, stretching, drying | 50 wt% | 20.41 | 0.69 | LFA-467 | [92] |
PVA/Chitosan | BNNs | sonication | Casting | 20 wt% | 38.21 | – | LFA-467 | [93] |
PBO/PDA (2) | BNNs | Ball milling | Hot pressing | 37.5 wt% | 45.15 | 0.772 | LFA-467 | [94] |
PPGTD, IPDI and AD | BNNs | Sonication | Hot pressing | 38 wt% | 12.62 | 0.63 | DXF-900 | [95] |
CCNF | BNNs | Sonication | Casting | 50 wt% | 17.31 | – | LFA-467 | [96] |
PMMA/PN | BNNs | Ball milling | Hot pressing | 40 vol% | 7.835 | 1.622 | Hot Disk | [97] |
EP | BNNs@IL | Ball milling | Casting | 45 wt% | 8.3 | 0.8 | LFA-467 | [98] |
Chitosan | BNNs | Sonication and ball milling | Gelation, stretching, drying | 8 wt% | 5.59 | – | LFA-467 | [99] |
P(VDF-HFP) | BNNs | Sonication | Blade casting, folding, and hot pressing | 25 vol% | 7.26 | – | LFA-467 | [100] |
PVA | BNNs | Ball milling | Vacuum-assisted filtration | 90 wt% | 27.3 | – | LFA-467 | [101] |
PVA | BNNs | Microfluidization | Vacuum-assisted filtration | 83 wt% | 67.6 | – | LFA-467 | [102] |
PVA/PDA (2) | BNNs | Sonication | Electrospinning and vacuum filtration | 35.5 wt% | 16.6 | – | LFA-467 | [103] |
TPU | BNNs | Sonication | Spray coating and hot pressing. | 50 wt% | 20.65 | 5.77 | LFA-467 | [104] |
PBO | BNNs | Sonication | Sol–gel-film conversion method | 10 wt% | 21.34 | – | LFA-467 | [105] |
ANF | BNNs | Sonication | Mechanical agitation, ultrasonication and filtration | 70 wt% | 28.75 | – | LFA-467 | [106] |
CNF | BNNs | Sonication | vacuum filtration. | 33.3 wt% | 13.46 | – | LFA-447 | [107] |
PP | BNNs | Sonication | Hot pressing | 19.1 vol% | 4.08 | – | LFA-467 | [108] |
PVA | BNNs | Ball milling | Scraping method | 30 wt% | 11.5 | – | LFA-467 | [109] |
PAN | BNNs | Ball milling | Electrospinning and electrospraying | 40 wt% | 24.98 | – | LFA-447 | [110] |
PI | BNNs | Hydrothermal | Electrospinning and electrospraying | 50 wt% | 7.58 | – | LFA-467 | [111] |
PS | BNNs | Sonication | Solution mixing | 10 wt% | 1.6 | – | LFA-467 | [112] |
ANF | BNNs@Ag NW | Solvothermal and in situ growth | Hot pressing | 50 wt% | 9.44 | 0.75 | Hot Disk | [113] |
Other Selected In-plane and Cross-plane TC Values from Different Methods/Conditions Before 2021 | ||||||||
PI/PAA | BNNs | Sonication | Casting | 30 wt% | 2.38 | 1.14 | LFA-467 | [114] |
PVA | h-BN | Sonication | Solution mixing | 10 wt% | 6.43 | 0.34 | LFA-447 | [115] |
PVDF | BNNs | Liquid-phase exfoliation | Electrospinning | 33 wt% | 16.3 | – | LFA-467 | [116] |
PVA | BNNs@Ag NW | Ball milling | Electrospinning | 33 wt% | 10.9 | – | LFA-467 | [117] |
EP | BNNs | Ball milling | Ice templating and infiltration | 34 vol% | 4.42 | – | LFA-467 | [118] |
Natural rubber/PDA (2) | h-BN | Rolling and shearing | 30 vol% | 0.39 | – | DXF 500 | [119] | |
PVA | BNNs | Sonication | Electrospinning and pressing vacuum filtration | 22 vol% | 21.4 | – | LFA-467 | [120] |
TPU | h-BN | Ball milling | Precipitation | 95 wt% | 50.3 | 6.9 | LFA-447 | [121] |
PVDF | BNNs | Ball milling | Solution mixing | 60 wt% | 11.88 | – | LFA-447 | [122] |
PVA | BNNs | Ball milling | Electrospinning | 40 wt% | 19.9 | – | LFA-467 | [123] |
PS/PP | BNNs | Solution mixing and hot pressing | 50 wt% | 5.57 | – | Hot Disk | [124] | |
PVA | BNNs | Sonication | Casting and stretching | 15 vol% | 13 | – | LaserPIT | [17] |
PVA | BNNs | Reflux | Casting | 20 vol% | 12 | – | LaserPIT | [58] |
PVA | BNNs | Ball milling | Casting | 20 vol% | 8.2 | – | LaserPIT | [58] |
PVA | BNNs | Hydrothermal | Casting | 20 vol% | 16 | – | LaserPIT | [58] |
PVA | BNNs | Hydrothermal | Casting | 40 vol% | 26 | – | LaserPIT | [125] |
PE | BNNs | Sonication | Cross-linking and casting | 40 wt% | 41 | – | LaserPIT | [126] |
Polymer a | Type of Fillers b | Exfoliation Method | Composites Fabrication Technique | Loading | In-Plane TC (Wm−1K−1) c | Cross-Plane TC (Wm−1K−1) c | Method d | Ref. |
---|---|---|---|---|---|---|---|---|
PU | BNNs | Ball milling | Ice templating and hot pressing | 80 vol% | 39 | 11.5 | Hot Disk | [140] |
LM | BN Platelets | – | Mechanical agitation | 90/10 vol% BN/LM | 82.2 | 20.6 | Hot Disk | [141] |
PVA | h-BN/BNNC | Freeze-drying | Ice pressing | 25 wt% | 20.3 | 21.3 | LFA-467 | [142] |
PA6/PET | BNNs | Sonication | Solution mixing, solidification, and hot pressing | 55 wt% | – | 3.28 | Hot Disk | [143] |
PVA | BNNs/BNNP | Ball-milling | Vacuum filtration | 52 vol% | 10.6 | 8.1 | LFA-457 | [144] |
PDMS | h-BN | Sonication, spray drying and sintering method | Hot pressing | 60 vol% | 5.6 | 4.3 | LFA-447 | [145] |
PAA | BNNs@NaCl | Vacuum filtration | Vacuum defoaming | 23.3 wt% | – | 4.93 | LFA-447 | [146] |
EP | BNNs | Sonication | Solution mixing | 30 wt% | – | 14.55 | TDTR | [147] |
EP/PDA | BNNs | Sonication | Solution mixing | 35.9 wt% | 10.20 | 4.95 | Laser flash | [148] |
EP | h-BN | – | Hot pressing | 50 wt% | – | 4.27 | LFA-467 | [149] |
EP | h-BN | – | Electrostatic flocking | 17.6 wt% | – | 0.65 | Hot Disk | [150] |
EP | BNNs/Ag NWs@Ni | Ball-milling | Hot pressing | 40 wt% BN/Ag NWs@Ni | 0.723 | 0.824 | LFA-467 | [151] |
EP | h-BN | – | 3D printing | 30 wt% | 7.962 | 0.893 | LFA-467 | [152] |
PMDA | BNNs | Liquid-phase exfoliation | Vacuum defoaming | 30 wt% ZnO@BN | 2.235 | 0.853 | LFA-467 | [153] |
PAA | GF-BNNs | – | Magnetic field induction | 30 wt% | 2.532 | 0.425 | Hot Disk | [154] |
EP | BNNs | Sonication | Vacuum filtration | 15.4 vol% | – | 2.01 | LFA-467 | [155] |
Other Selected In-plane and Cross-plane TC Values from Different Methods/Conditions Before 2021 | ||||||||
EP | BNNs | Freezing | Ice templating and infiltration | 9.29 vol% | 2.85 | 2.40 | LFA-467 | [138] |
EP | h-BN | Sonication | Vacuum filtration | 44 vol% | – | 9 | LFA-447 | [156] |
EP | h-BN/Ag NP | Sonication | Hot pressing | 62.2 wt% | 23.1 | 3.6 | LFA-467 | [157] |
Silicone rubber | h-BN | – | Hot pressing | 39.8 vol% | – | 5.4 | LFA-427 | [158] |
PVA | h-BN | Sonication | Vacuum filtration | 27 vol% | 8.44 | 1.63 | LFA-447 | [159] |
EP | BNNs | Sonication | Solution Mixing | 50 vol% | – | 9.81 | LFA-447 | [160] |
PDMS/PVA | BNNs | Liquid-phase exfoliation | Electrospinning and vacuum-assisted impregnation | 50 vol% | – | 1.94 | LFA-467 | [133] |
EP | BNNs | Sonication | Vacuum infiltration | 4.4 vol% | – | 1.56 | LFA-447 | [161] |
Silicone gel | h-BN | – | Solution Mixing | 9.14 vol% | – | 0.357 | LFA-457 | [162] |
PE | h-BN | – | Melt blending | 5.97 vol% | – | 1.37 | LFA-467 | [163] |
PMMA | BNNs | Sonication | Vacuum infiltration and wet process | 80 wt% | 14.7 | 10.2 | LFA-447 | [164] |
EP | BNNs | Liquid-phase exfoliation | Vacuum filtration and impregnation | 21.9 vol% | 1.43 | 4.22 | Hot Disk | [165] |
PTFE | h-BN/AlN | – | Compression molding | 30 vol% | – | 1.04 | LFA-447 | [166] |
PCL | h-BN | Ice templating | In situ polymerization | 13.41 wt% | 1.42 | 1.01 | LFA-467 | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.; Han, J.; Meziani, M.J.; Cao, L.; Yerra, S.; Collins, J.; Dumra, S.; Sun, Y.-P. Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. Nanomaterials 2024, 14, 1259. https://doi.org/10.3390/nano14151259
Singh B, Han J, Meziani MJ, Cao L, Yerra S, Collins J, Dumra S, Sun Y-P. Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. Nanomaterials. 2024; 14(15):1259. https://doi.org/10.3390/nano14151259
Chicago/Turabian StyleSingh, Buta, Jinchen Han, Mohammed J. Meziani, Li Cao, Subhadra Yerra, Jordan Collins, Simran Dumra, and Ya-Ping Sun. 2024. "Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance" Nanomaterials 14, no. 15: 1259. https://doi.org/10.3390/nano14151259
APA StyleSingh, B., Han, J., Meziani, M. J., Cao, L., Yerra, S., Collins, J., Dumra, S., & Sun, Y. -P. (2024). Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. Nanomaterials, 14(15), 1259. https://doi.org/10.3390/nano14151259