Characterization of Food-Additive Titanium Dioxide and Dietary Exposure to Titanium Dioxide Nanoparticles among the Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Particle Size Distributions of Food-Additive TiO2 by Transmission Electron Microscopy (TEM)
2.3. Determination of TiO2 Content by ICP-AES and DMC
2.4. Dietary Exposure of TiO2 and TiO2 NPs
2.5. Statistical Analysis
3. Results
3.1. Size Distribution of Food-Additive TiO2 and Proportion of TiO2 NPs
3.2. Content Determination of TiO2 in Food Categories
3.3. Dietary Exposure of TiO2 and TiO2 NPs and Differences by Demographic Characteristics
3.4. Age and Regional Distribution and Food Contribution of TiO2 NP Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geiss, O.; Ponti, J.; Senaldi, C.; Bianchi, I.; Mehn, D.; Barrero, J.; Gilliland, D.; Matissek, R.; Anklam, E. Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 239–253. [Google Scholar] [CrossRef]
- Ropers, M.-H.; Terrisse, H.; Mercier-Bonin, M.; Humbert, B. Titanium Dioxide as Food Additive. Appl. Titan. Dioxide 2017, 10. [Google Scholar] [CrossRef]
- Dudefoi, W.; Moniz, K.; Allen-Vercoe, E.; Ropers, M.H.; Walker, V.K. Impact of food grade and nano-TiO(2) particles on a human intestinal community. Food Chem. Toxicol. 2017, 106, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.J.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H.P.; Marvin, H.J.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293. [Google Scholar] [CrossRef] [PubMed]
- Bachler, G.; von Goetz, N.; Hungerbuhler, K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2015, 9, 373–380. [Google Scholar] [CrossRef]
- Boutillier, S.; Fourmentin, S.; Laperche, B. History of titanium dioxide regulation as a food additive: A review. Environ. Chem. Lett. 2022, 20, 1017–1033. [Google Scholar] [CrossRef]
- Baranowska-Wojcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health-a Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef]
- Shabbir, S.; Kulyar, M.F.; Bhutta, Z.A.; Boruah, P.; Asif, M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO(2)NPs) and Their Jeopardy to Human Population. Bionanoscience 2021, 11, 621–632. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, D.; Han, S.; Zhou, S.; Jia, G. Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles. Part. Fibre Toxicol. 2019, 16, 48. [Google Scholar] [CrossRef]
- Talamini, L.; Gimondi, S.; Violatto, M.B.; Fiordaliso, F.; Pedica, F.; Tran, N.L.; Sitia, G.; Aureli, F.; Raggi, A.; Nelissen, I.; et al. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology 2019, 13, 1087–1101. [Google Scholar] [CrossRef]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran. Biomed. J. 2016, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Faddah, L.M.; Baky, N.A.A.; Al-Rasheed, N.M.; Al-Rasheed, N.M. Biochemical responses of nanosize titanium dioxide in the heart of rats following administration of idepenone and quercetin. Afr. J. Pharm. Pharmacol. 2013, 7, 2639–2651. [Google Scholar] [CrossRef]
- Shi, J.; Han, S.; Zhang, J.; Liu, Y.; Chen, Z.; Jia, G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact 2022, 25, 100377. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; An, H.; Li, L.; Wang, J.; Lu, T.; Wang, H.; Hu, Y.; Song, G.; Liu, S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: A Systematic Review of the Literature and Meta-analysis. Biol. Trace Elem. Res. 2021, 199, 2057–2076. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, J.; Bian, Q.; Ning, J.; Yong, L.; Ou, T.; Song, Y.; Wei, S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. Toxics 2023, 11, 882. [Google Scholar] [CrossRef]
- Ferrante, M.; Grasso, A.; Salemi, R.; Libra, M.; Tomasello, B.; Fiore, M.; Copat, C. DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO(2)-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2. Int. J. Environ. Res. Public Health 2023, 20, 2002. [Google Scholar] [CrossRef]
- Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 2019, 75, 40–53. [Google Scholar] [CrossRef]
- Ghanbary, F.; Seydi, E.; Naserzadeh, P.; Salimi, A. Toxicity of nanotitanium dioxide (TiO(2)-NP) on human monocytes and their mitochondria. Environ. Sci. Pollut. Res. Int. 2018, 25, 6739–6750. [Google Scholar] [CrossRef]
- Jain, A.K.; Senapati, V.A.; Singh, D.; Dubey, K.; Maurya, R.; Pandey, A.K. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake. Food Chem. Toxicol. 2017, 105, 127–139. [Google Scholar] [CrossRef]
- Proquin, H.; Rodriguez-Ibarra, C.; Moonen, C.G.; Urrutia Ortega, I.M.; Briede, J.J.; de Kok, T.M.; van Loveren, H.; Chirino, Y.I. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: Contribution of micro and nano-sized fractions. Mutagenesis 2017, 32, 139–149. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Furst, P.; Gundert-Remy, U.; Gürtler, R.; et al. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J. 2021, 19, e06585. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Titanium Dioxide (TiO2) as a Food Additive: Current Science Report; Health Canada: Ottawa, CA, Canada, 2022; Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/reports-publications/titanium-dioxide-food-additive-science-report.html (accessed on 1 June 2023).
- Committee on Toxicity (COT). Interim Position Paper on Titanium Dioxide. 2021. Available online: https://cot.food.gov.uk/sites/default/files/2022-01/TiO2%20COT%20Interim%20position%20paper.pdf (accessed on 1 June 2023).
- Verleysen, E.; Waegeneers, N.; Vos, S.; Brassinne, F.; Ledecq, M.; Steen, F.; Andjelkovic, M.; Janssens, R.; Mathioudaki, S.; Delfosse, L.; et al. Physicochemical characterization of nanoparticles in food additives in the context of risk identification. EFSA Support. Publ. 2021, 18, 6678E. [Google Scholar] [CrossRef]
- FSA Panel on Food Contact Material, Enzymes, Flavourings and Processing Aids (CEF). Statement on the Safety Evaluation of Smoke Flavourings Primary Products: Interpretation of the Margin of Safety. EFSA J. 2010, 8, 1325. [Google Scholar] [CrossRef]
- Sungur, S.; Kaya, P.; Koroglu, M. Determination of titanium dioxide nanoparticles used in various foods. Food Addit. Contam. Part. B Surveill. 2020, 13, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.B.; Boatman, R.; Brown, S.C. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats. Regul. Toxicol. Pharmacol. 2015, 73, 887–896. [Google Scholar] [CrossRef] [PubMed]
- GEMS/Food-EUROS. Reliable Evaluation of Low-Level Contamination of Food. In Proceedings of the Second Workshop, GEM/Food-EUROS, Kulmbach, Germany, 26–27 May 1995. [Google Scholar]
- EFSA Panel on Food Contact Material, Enzymes, Flavourings and Processing Aids. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1–1325. [Google Scholar]
- He, L.; Wang, H.; Duan, S.; Gao, Y.; Lyu, L.; Ou, X.; Yu, N.; Zhang, Y.; Zheng, L.; Wang, Y. Characterization of titanium dioxide nanoparticles in confectionary products and estimation of dietary exposure level among the Chinese population. NanoImpact 2022, 28, 100435. [Google Scholar] [CrossRef]
- Kim, N.; Kim, C.; Jung, S.; Park, Y.; Lee, Y.; Jo, J.; Hong, M.; Lee, S.; Oh, Y.; Jung, K. Determination and identification of titanium dioxide nanoparticles in confectionery foods, marketed in South Korea, using inductively coupled plasma optical emission spectrometry and transmission electron microscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 1238–1246. [Google Scholar] [CrossRef]
- Espada-Bernabe, E.; Moreno-Martin, G.; Gomez-Gomez, B.; Madrid, Y. Assesing the behaviour of particulate/nanoparticulate form of E171 (TiO(2)) food additive in colored chocolate candies before and after in vitro oral ingestion by spICP-MS, TEM and cellular in vitro models. Food Chem. 2023, 432, 137201. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food. Re-evaluation of titanium dioxide (E 171) as a food additive. EFSA J. 2016, 14, 1–4545. [Google Scholar]
- Food Standards Australia New Zealand (FSANZ). Titanium Dioxide as a Food Additive; Food Standards Australia New Zealand: Canberra, Australia, 2022; pp. 1–30. [Google Scholar]
- Meena, R.; Kajal, K.; R, P. Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Appl. Biochem. Biotechnol. 2015, 175, 825–840. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Holzwarth, U.; Schleh, C.; Kozempel, J.; Wenk, A.; Haberl, N.; Hirn, S.; Schaffler, M.; Lipka, J.; Semmler-Behnke, M.; et al. Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology 2017, 11, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, O.; Pridvorova, S.; Zherdev, A.; Klochkov, S.; Novikova, O.; Shevtsova, E.; Bachurin, S.; Dzantiev, B. Size-Dependent Differences in Biodistribution of Titanium Dioxide Nanoparticles After Sub-Acute Intragastric Administrations to Rats. Curr. Nanosci. 2016, 12, 228–236. [Google Scholar] [CrossRef]
- Arnout, F.; Frewer, L.; Bennett, D.; Morris, V.; Smolander, M.; Kampers, F.; Bouwmeester, H.; Gergely, A.; Bowman, D.; Tran, L. Nanotechnologies in Food; Chaudhry, Q., Castle, L., Watkins, R., O’Brien, P., Craighead, H., Kroto, H., Eds.; Royal Society of Chemistry: Cambridge, UK, 2010; p. 244. [Google Scholar] [CrossRef]
- Rompelberg, C.; Heringa, M.B.; van Donkersgoed, G.; Drijvers, J.; Roos, A.; Westenbrink, S.; Peters, R.; van Bemmel, G.; Brand, W.; Oomen, A.G. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 2016, 10, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Fiordaliso, F.; Foray, C.; Salio, M.; Salmona, M.; Diomede, L. Realistic Evaluation of Titanium Dioxide Nanoparticle Exposure in Chewing Gum. J. Agric. Food Chem. 2018, 66, 6860–6868. [Google Scholar] [CrossRef] [PubMed]
- Cornu, R.; Beduneau, A.; Martin, H. Ingestion of titanium dioxide nanoparticles: A definite health risk for consumers and their progeny. Arch. Toxicol. 2022, 96, 2655–2686. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Yang, T.; Xu, P.; Cao, W.; Xu, J.; Gan, Q.; Pan, H.; Hu, X.; Zhang, Q. Snack consumption and the infuencing factors of students participation in the Nutrition lmprovement Program for Rural Compulsory Education in 2019. Chin. J. Sch. Health 2021, 42, 329–333. (In Chinese) [Google Scholar] [CrossRef]
Sample | Number of Particles | Minimum Feret Diameter (nm) | Maximum Feret Diameter (nm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | ||
Sample 1 | 361 | 103.6 | 33.8 | 38.5 | 238.4 | 127.9 | 43.4 | 50.3 | 307.5 |
Sample 2 | 469 | 110.5 | 36.7 | 27.7 | 251.5 | 135.5 | 48.0 | 33.6 | 413.6 |
Sample 3 | 224 | 103.3 | 39.5 | 39.8 | 290.4 | 128.5 | 49.9 | 41.9 | 328.2 |
Sample 4 | 359 | 123.9 | 35.2 | 35.0 | 279.4 | 152.4 | 44.9 | 45.0 | 335.6 |
Sample 5 | 315 | 106.8 | 36.5 | 29.0 | 268.7 | 124.6 | 46.3 | 34.0 | 316.0 |
Sample 6 | 331 | 118.8 | 38.1 | 36.3 | 274.9 | 146.2 | 48.7 | 43.9 | 350.8 |
Sample 7 | 436 | 112.0 | 37.5 | 35.5 | 265.0 | 134.9 | 51.3 | 40.3 | 319.6 |
Sample 8 | 254 | 112.8 | 38.1 | 51.5 | 231.7 | 139.7 | 49.8 | 55.1 | 325.1 |
Sample 9 | 300 | 107.5 | 34.3 | 26.8 | 250.6 | 133.0 | 45.4 | 42.0 | 379.1 |
Sample 10 | 243 | 111.7 | 35.7 | 27.2 | 227.4 | 137.7 | 49.5 | 43.4 | 287.5 |
Sample 11 | 281 | 129.1 | 38.7 | 32.5 | 271.3 | 159.2 | 49.9 | 36.5 | 339.0 |
Sample 12 | 392 | 115.9 | 39.2 | 43.6 | 266.1 | 138.1 | 51.0 | 50.1 | 342.5 |
Sample 13 | 323 | 111.4 | 42.0 | 43.0 | 222.2 | 143.7 | 52.2 | 52.4 | 301.7 |
Sample 14 | 389 | 120.0 | 38.1 | 40.3 | 243.5 | 150.2 | 48.3 | 49.5 | 307.1 |
Sample 15 | 384 | 120.8 | 36.5 | 41.6 | 231.5 | 149.7 | 47.3 | 42.7 | 321.5 |
Sample 16 | 581 | 119.1 | 44.2 | 35.5 | 266.7 | 146.2 | 56.8 | 46.8 | 333.4 |
Sample 17 | 441 | 115.0 | 38.1 | 44.5 | 258.8 | 142.0 | 46.0 | 61.8 | 322.0 |
Sample 18 | 286 | 121.4 | 37.9 | 48.5 | 249.6 | 153.4 | 52.8 | 55.0 | 330.7 |
Sample 19 | 531 | 121.4 | 39.3 | 40.7 | 255.2 | 146.4 | 48.1 | 56.6 | 351.3 |
Sample 20 | 358 | 122.9 | 36.8 | 35.9 | 291.7 | 152.3 | 47.3 | 41.8 | 380.6 |
Sample 21 | 389 | 126.5 | 38.1 | 48.5 | 260.6 | 153.8 | 50.4 | 53.1 | 365.1 |
Total | 7647 | 116.4 | 38.5 | 26.8 | 291.7 | 143.0 | 49.8 | 33.6 | 413.6 |
Food Category | Maximum Use Level (mg/kg) 2 | Sample Size | Detection Rate (%) | Exceedance Rate 4 (%) | Content of TiO2 (mg/kg) 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Median | P95 | Min | Max | |||||
Jams | 5000 | 46 | 21.74 | 0.00 | 1.07 | 0.59 | 1.50 | 1.50 | 0.30 | 2.20 |
Preserved surface-drying fruit | 10,000 | 27 | 33.33 | 0.00 | 24.68 | 117.00 | 1.50 | 11.68 | 0.43 | 610.00 |
Preserved plum | 10,000 | 18 | 33.33 | 0.00 | 9.12 | 30.19 | 1.50 | 24.91 | 1.12 | 130.00 |
Fried nuts and seeds | 10,000 | 747 | 92.37 | 0.00 | 18.50 | 308.60 | 0.30 | 2.91 | 0.00 | 7800.00 |
Cocoa products, chocolate, and chocolate products | 2000 | 107 | 86.92 | 1.87 | 140.52 | 529.71 | 3.32 | 622.10 | 0.15 | 4680.00 |
Gum-based candy | 5000 | 3 | 66.67 | 0.00 | 2.01 | 2.24 | 0.75 | 4.22 | 0.69 | 4.60 |
Other candies excluding gum-based candies | 10,000 | 84 | 42.86 | 0.00 | 186.46 | 634.29 | 0.75 | 1725.00 | 0.15 | 3300.00 |
Mayonnaise, salad dressing | 500 | 54 | 37.04 | 1.85 | 109.55 | 377.71 | 0.30 | 453.50 | 0.30 | 2640.00 |
Powdered drink | GMP 3 | 122 | 72.95 | 0.00 | 54.82 | 141.65 | 9.80 | 481.25 | 0.15 | 783.00 |
Jelly | 10,000 | 41 | 34.15 | 0.00 | 114.57 | 294.80 | 1.10 | 752.00 | 0.30 | 1400.00 |
Puffed food | 10,000 | 297 | 69.02 | 0.34 | 146.01 | 862.18 | 0.86 | 220.00 | 0.15 | 10,200.00 |
Total | - | 1546 | 75.94 | 0.26 | 68.61 | 491.98 | 0.42 | 180.00 | 0.00 | 10,200.00 |
Subgroups | Dietary Exposure of TiO2 (μg/kg bw/day) | Dietary Exposure of TiO2 NPs (μg/kg bw/day) 2 | p Value 3 | ||||
---|---|---|---|---|---|---|---|
Mean | Median | P95 | Mean | Median | P95 | ||
All | 34.84 | 5.47 | 161.24 | 3.44 | 0.54 | 15.94 | |
Age | <0.001 | ||||||
3–9 y | 90.27 | 40.51 | 319.24 | 8.93 | 4.01 | 31.57 | |
10–17 y | 52.24 | 13.81 | 136.27 | 5.17 | 1.37 | 13.48 | |
18–64 y | 26.36 | 4.59 | 123.91 | 2.61 | 0.45 | 12.25 | |
>65 y | 14.85 | 4.84 | 68.83 | 1.47 | 0.48 | 6.81 | |
Sex | 0.846 | ||||||
Male | 33.90 | 5.37 | 143.98 | 3.35 | 0.53 | 14.24 | |
Female | 35.68 | 5.61 | 174.92 | 3.53 | 0.55 | 17.30 | |
Province | <0.001 | ||||||
Beijing | 34.93 | 5.29 | 188.39 | 3.45 | 0.52 | 18.63 | |
Hebei | 34.56 | 5.89 | 157.49 | 3.42 | 0.58 | 15.57 | |
Inner Mongolia | 61.86 | 50.57 | 148.17 | 6.12 | 5.00 | 14.65 | |
Liaoning | 13.80 | 5.14 | 65.95 | 1.36 | 0.51 | 6.52 | |
Heilongjiang | 34.20 | 5.58 | 132.86 | 3.38 | 0.55 | 13.14 | |
Jiangsu | 58.31 | 7.63 | 196.08 | 5.77 | 0.75 | 19.39 | |
Zhejiang | 31.31 | 3.95 | 135.41 | 3.10 | 0.39 | 13.39 | |
Fujian | 41.95 | 6.27 | 169.05 | 4.15 | 0.62 | 16.72 | |
Jiangxi | 22.27 | 5.09 | 100.18 | 2.20 | 0.50 | 9.91 | |
Shandong | 30.68 | 6.56 | 137.77 | 3.03 | 0.65 | 13.62 | |
Henan | 13.94 | 3.51 | 73.63 | 1.38 | 0.35 | 7.28 | |
Hubei | 58.32 | 7.32 | 146.56 | 5.77 | 0.72 | 14.49 | |
Guangdong | 42.85 | 5.46 | 239.59 | 4.24 | 0.54 | 23.69 | |
Chongqing | 30.60 | 6.23 | 178.46 | 3.03 | 0.62 | 17.65 | |
Guizhou | 30.54 | 4.20 | 153.52 | 3.02 | 0.42 | 15.18 | |
Yunnan | 12.44 | 4.80 | 44.80 | 1.23 | 0.47 | 4.43 | |
Shaanxi | 28.75 | 3.93 | 130.97 | 2.84 | 0.39 | 12.95 | |
Gansu | 19.73 | 5.26 | 95.36 | 1.95 | 0.52 | 9.43 |
Age Groups | MoS Values Based on Exposure to TiO2 | MoS Values Based on Exposure to TiO2 NPs | ||
---|---|---|---|---|
Mean | P95 | Mean | P95 | |
3–9 y | 11,078 | 3132 | 111,982 | 31,676 |
10–17 y | 19,142 | 7338 | 193,424 | 74,184 |
18–64 y | 37,936 | 8070 | 383,142 | 81,633 |
>65 y | 67,340 | 14,529 | 680,272 | 146,843 |
All | 28,703 | 6202 | 290,698 | 62,735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, H.; Liang, C.; Liu, Q.; Ou, T.; Yong, L.; Xiao, X.; Sui, H.; Jiang, D.; Liu, Z.; et al. Characterization of Food-Additive Titanium Dioxide and Dietary Exposure to Titanium Dioxide Nanoparticles among the Chinese Population. Nanomaterials 2024, 14, 1427. https://doi.org/10.3390/nano14171427
Cao Y, Wang H, Liang C, Liu Q, Ou T, Yong L, Xiao X, Sui H, Jiang D, Liu Z, et al. Characterization of Food-Additive Titanium Dioxide and Dietary Exposure to Titanium Dioxide Nanoparticles among the Chinese Population. Nanomaterials. 2024; 14(17):1427. https://doi.org/10.3390/nano14171427
Chicago/Turabian StyleCao, Yue, Huali Wang, Chunlai Liang, Qing Liu, Tong Ou, Ling Yong, Xiao Xiao, Haixia Sui, Dingguo Jiang, Zhaoping Liu, and et al. 2024. "Characterization of Food-Additive Titanium Dioxide and Dietary Exposure to Titanium Dioxide Nanoparticles among the Chinese Population" Nanomaterials 14, no. 17: 1427. https://doi.org/10.3390/nano14171427
APA StyleCao, Y., Wang, H., Liang, C., Liu, Q., Ou, T., Yong, L., Xiao, X., Sui, H., Jiang, D., Liu, Z., Wei, S., & Song, Y. (2024). Characterization of Food-Additive Titanium Dioxide and Dietary Exposure to Titanium Dioxide Nanoparticles among the Chinese Population. Nanomaterials, 14(17), 1427. https://doi.org/10.3390/nano14171427