Doping the Spin-Polarized Graphene Minicone on Ni(111)
Abstract
:1. Introduction
2. Computational Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Bi-Dimensional |
RE | Rare Earth |
FM | Ferromagnetic |
BZ | Brillouin Zone |
DFT | Density Functional Theory |
DOSs | Density Of States |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Profeta, G.; Calandra, M.; Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys. 2012, 8, 131–134. [Google Scholar] [CrossRef]
- Ludbrook, B.M.; Levy, G.; Nigge, P.; Zonno, M.; Schneider, M.; Dvorak, D.J.; Veenstra, C.N.; Zhdanovich, S.; Wong, D.; Dosanjh, P.; et al. Evidence for superconductivity in Li-decorated monolayer graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 11795–11799. [Google Scholar] [CrossRef]
- Ahn, E.C. 2D materials for spintronic devices. NPJ 2D Mater. Appl. 2020, 4, 17. [Google Scholar] [CrossRef]
- Chernyshev, A.L.; Starykh, O.A. Roller Coaster in a Flatland: Magnetoresistivity in Eu-Intercalated Graphite. Phys. Rev. X 2022, 12, 021010. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Senkovskiy, B.V.; Usachov, D.Y.; Fedorov, A.V.; Marangoni, T.; Haberer, D.; Tresca, C.; Profeta, G.; Caciuc, V.; Tsukamoto, S.; Atodiresei, N.; et al. Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint. ACS Nano 2018, 12, 7571–7582. [Google Scholar] [CrossRef]
- Liu, Y.W.; He, L. Recent progresses on graphene-based artificial nanostructures: A perspective from scanning tunneling microscopy. Quantum Front. 2023, 2, 2. [Google Scholar] [CrossRef]
- Kumar, V. Linear and Nonlinear Optical Properties of Graphene: A Review. J. Electron. Mater. 2021, 50, 3773–3799. [Google Scholar] [CrossRef]
- Ciattoni, A.; Rizza, C. Harnessing quadratic optical response of two-dimensional materials through active microcavities. Phys. Rev. A 2014, 90, 033828. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Ohno, Y.; Maehashi, K.; Matsumoto, K. Chemical and biological sensing applications based on graphene field-effect transistors. Biosens. Bioelectron. 2010, 26, 1727–1730. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Vorobiev, A.; Generalov, A.; Andersson, M.A.; Stake, J. A flexible graphene terahertz detector. Appl. Phys. Lett. 2017, 111, 021102. [Google Scholar] [CrossRef]
- Gargiani, P.; Cuadrado, R.; Vasili, H.B.; Pruneda, M.; Valvidares, M. Graphene-based synthetic antiferromagnets and ferrimagnets. Nat. Commun. 2017, 8, 699. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, P.; Li, Y.; Li, R.; Zhang, K.; Tian, H.; Yu, K.; Bian, B.; Hao, L.; Xiao, X.; et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 2024, 625, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Khomyakov, P.A.; Giovannetti, G.; Rusu, P.C.; Brocks, G.; van den Brink, J.; Kelly, P.J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425. [Google Scholar] [CrossRef]
- Dedkov, Y.S.; Shikin, A.M.; Adamchuk, V.K.; Molodtsov, S.L.; Laubschat, C.; Bauer, A.; Kaindl, G. Intercalation of copper underneath a monolayer of graphite on Ni(111). Phys. Rev. B 2001, 64, 035405. [Google Scholar] [CrossRef]
- Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A.M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601. [Google Scholar] [CrossRef]
- Varykhalov, A.; Rader, O. Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 2009, 80, 035437. [Google Scholar] [CrossRef]
- Brugger, T.; Günther, S.; Wang, B.; Dil, J.H.; Bocquet, M.L.; Osterwalder, J.; Wintterlin, J.; Greber, T. Comparison of electronic structure and template function of single-layer graphene and a hexagonal boron nitride nanomesh on Ru(0001). Phys. Rev. B 2009, 79, 045407. [Google Scholar] [CrossRef]
- Varykhalov, A.; Marchenko, D.; Sánchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O. Intact Dirac Cones at Broken Sublattice Symmetry: Photoemission Study of Graphene on Ni and Co. Phys. Rev. X 2012, 2, 041017. [Google Scholar] [CrossRef]
- Papagno, M.; Moras, P.; Sheverdyaeva, P.M.; Doppler, J.; Garhofer, A.; Mittendorfer, F.; Redinger, J.; Carbone, C. Hybridization of graphene and a Ag monolayer supported on Re(0001). Phys. Rev. B 2013, 88, 235430. [Google Scholar] [CrossRef]
- Tresca, C.; Verbitskiy, N.; Fedorov, A.; Grüneis, A.; Profeta, G. Alloyed surfaces: New substrates for graphene growth. Surface Sci. 2017, 665, 28–31. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Verbitskiy, N.I.; Haberer, D.; Struzzi, C.; Petaccia, L.; Usachov, D.; Vilkov, O.Y.; Vyalikh, D.V.; Fink, J.; Knupfer, M.; et al. Observation of a universal donor-dependent vibrational mode in graphene. Nat. Commun. 2014, 5, 3257. [Google Scholar] [CrossRef] [PubMed]
- Verbitskiy, N.I.; Fedorov, A.V.; Tresca, C.; Profeta, G.; Petaccia, L.; Senkovskiy, B.V.; Usachov, D.Y.; Vyalikh, D.V.; Yashina, L.V.; Eliseev, A.A.; et al. Environmental control of electron–phonon coupling in barium doped graphene. 2D Mater. 2016, 3, 045003. [Google Scholar] [CrossRef]
- Bisti, F.; Priante, F.; Fedorov, A.V.; Donarelli, M.; Fantasia, M.; Petaccia, L.; Frank, O.; Kalbac, M.; Profeta, G.; Grüneis, A.; et al. Electron-phonon coupling origin of the graphene π*-band kink via isotope effect. Phys. Rev. B 2021, 103, 035119. [Google Scholar] [CrossRef]
- Sfuncia, G.; Nicotra, G.; Giannazzo, F.; Pécz, B.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface. CrystEngComm 2023, 25, 5810–5817. [Google Scholar] [CrossRef]
- Usachov, D.; Fedorov, A.; Otrokov, M.M.; Chikina, A.; Vilkov, O.; Petukhov, A.; Rybkin, A.G.; Koroteev, Y.M.; Chulkov, E.V.; Adamchuk, V.K.; et al. Observation of Single-Spin Dirac Fermions at the Graphene/Ferromagnet Interface. Nano Lett. 2015, 15, 2396–2401. [Google Scholar] [CrossRef]
- Jugovac, M.; Cojocariu, I.; Genuzio, F.; Bigi, C.; Mondal, D.; Vobornik, I.; Fujii, J.; Moras, P.; Feyer, V.; Locatelli, A.; et al. Effect of Residual Carbon on Spin-Polarized Coupling at a Graphene/Ferromagnet Interface. Adv. Electron. Mater. 2023, 9, 2300031. [Google Scholar] [CrossRef]
- Weser, M.; Voloshina, E.N.; Horn, K.; Dedkov, Y.S. Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system. Phys. Chem. Chem. Phys. 2011, 13, 7534. [Google Scholar] [CrossRef]
- Jugovac, M.; Cojocariu, I.; Sánchez-Barriga, J.; Gargiani, P.; Valvidares, M.; Feyer, V.; Blügel, S.; Bihlmayer, G.; Perna, P. Inducing Single Spin-Polarized Flat Bands in Monolayer Graphene. Adv. Mater. 2023, 35, 2301441. [Google Scholar] [CrossRef] [PubMed]
- Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; van Wees, B.J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Khademi, A.; Sajadi, E.; Dosanjh, P.; Bonn, D.A.; Folk, J.A.; Stöhr, A.; Starke, U.; Forti, S. Alkali doping of graphene: The crucial role of high-temperature annealing. Phys. Rev. B 2016, 94, 201405. [Google Scholar] [CrossRef]
- Link, S.; Forti, S.; Stöhr, A.; Küster, K.; Rösner, M.; Hirschmeier, D.; Chen, C.; Avila, J.; Asensio, M.C.; Zakharov, A.A.; et al. Introducing strong correlation effects into graphene by gadolinium intercalation. Phys. Rev. B 2019, 100, 121407. [Google Scholar] [CrossRef]
- Tresca, C.; Verbitskiy, N.I.; Grüneis, A.; Profeta, G. Ab initio study of the (2 × 2) phase of barium on graphene. Eur. Phys. J. B 2018, 91, 165. [Google Scholar] [CrossRef]
- Rosenzweig, P.; Karakachian, H.; Marchenko, D.; Küster, K.; Starke, U. Overdoping Graphene Beyond the van Hove Singularity. Phys. Rev. Lett. 2020, 125, 176403. [Google Scholar] [CrossRef]
- Ehlen, N.; Hell, M.; Marini, G.; Hasdeo, E.H.; Saito, R.; Falke, Y.; Goerbig, M.O.; Di Santo, G.; Petaccia, L.; Profeta, G.; et al. Origin of the Flat Band in Heavily Cs-Doped Graphene. ACS Nano 2020, 14, 1055–1069. [Google Scholar] [CrossRef]
- Sheverdyaeva, P.M.; Bihlmayer, G.; Cappelluti, E.; Pacilé, D.; Mazzola, F.; Atodiresei, N.; Jugovac, M.; Grimaldi, I.; Contini, G.; Kundu, A.K.; et al. Spin-Dependent ππ∗ Gap in Graphene on a Magnetic Substrate. Phys. Rev. Lett. 2024, 132, 266401. [Google Scholar] [CrossRef]
- Zaarour, A.; Malesys, V.; Teyssandier, J.; Cranney, M.; Denys, E.; Bubendorff, J.L.; Florentin, A.; Josien, L.; Vonau, F.; Aubel, D.; et al. Flat band and Lifshitz transition in long-range-ordered supergraphene obtained by Erbium intercalation. Phys. Rev. Res. 2023, 5, 013099. [Google Scholar] [CrossRef]
- Bisti, F.; Profeta, G.; Vita, H.; Donarelli, M.; Perrozzi, F.; Sheverdyaeva, P.M.; Moras, P.; Horn, K.; Ottaviano, L. Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation. Phys. Rev. B 2015, 91, 245411. [Google Scholar] [CrossRef]
- Jugovac, M.; Tresca, C.; Cojocariu, I.; Di Santo, G.; Zhao, W.; Petaccia, L.; Moras, P.; Profeta, G.; Bisti, F. Clarifying the apparent flattening of the graphene band near the van Hove singularity. Phys. Rev. B 2022, 105, L241107. [Google Scholar] [CrossRef]
- Voloshina, E.; Dedkov, Y. Electronic and Magnetic Properties of the Graphene- Ferromagnet Interfaces: Theory vs. Experiment. In Physics and Applications of Graphene-Experiments; InTechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Guo, Q.; Ovcharenko, R.; Paulus, B.; Dedkov, Y.; Voloshina, E. Electronic and Magnetic Properties of The Graphene/RE/Ni(111) (RE: La, Yb) Intercalation-Like Interfaces: A DFT Analysis. Adv. Theory Simul. 2022, 5, 2100621. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.Z.; Hupalo, M.; Yao, Y.X.; Tringides, M.C.; Lu, W.C.; Ho, K.M. Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy. Phys. Rev. B 2010, 82, 245408. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Kurzmann, A.; Kleeorin, Y.; Tong, C.; Garreis, R.; Knothe, A.; Eich, M.; Mittag, C.; Gold, C.; de Vries, F.K.; Watanabe, K.; et al. Kondo effect and spin–orbit coupling in graphene quantum dots. Nat. Commun. 2021, 12, 6004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, H.; Yang, L.; Jin, W.; Zhang, W.; Chang, H. Graphene-based spintronics. Appl. Phys. Rev. 2024, 11, 021308. [Google Scholar] [CrossRef]
Gr/Ni(111) | La | Eu | Gd | Yb | |
---|---|---|---|---|---|
(Å) | 2.05 | 2.20 | 2.12 | 2.21 | 2.12 |
(Å) | 0.01 | 0.05 | 0.04 | 0.05 | 0.05 |
(Å) | – | 2.32 | 2.38 | 2.18 | 2.23 |
() | 0.52 | 0.54 | 0.35 | 0.55 | 0.34 |
() | 0.03/−0.01(5) | 0.00 | 0.00/−0.00(7) | −0.00(6)/0.00 | 0.00/−0.00(8) |
() | – | 0.16 | −7.05 | 7.37 | −0.00(8) |
Lu-Gr/Ni(111) | Y-Gr/Ni(111) | |
---|---|---|
(Å) | 2.20 | 2.20 |
(Å) | 0.07 | 0.06 |
(Å) | 2.08 | 2.14 |
() | 0.54 | 0.54 |
() | −0.00(2)/0.00(7) | 0.00/0.00(5) |
() | 0.05 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tresca, C.; Profeta, G.; Bisti, F. Doping the Spin-Polarized Graphene Minicone on Ni(111). Nanomaterials 2024, 14, 1448. https://doi.org/10.3390/nano14171448
Tresca C, Profeta G, Bisti F. Doping the Spin-Polarized Graphene Minicone on Ni(111). Nanomaterials. 2024; 14(17):1448. https://doi.org/10.3390/nano14171448
Chicago/Turabian StyleTresca, Cesare, Gianni Profeta, and Federico Bisti. 2024. "Doping the Spin-Polarized Graphene Minicone on Ni(111)" Nanomaterials 14, no. 17: 1448. https://doi.org/10.3390/nano14171448
APA StyleTresca, C., Profeta, G., & Bisti, F. (2024). Doping the Spin-Polarized Graphene Minicone on Ni(111). Nanomaterials, 14(17), 1448. https://doi.org/10.3390/nano14171448