Construction of Patterned Cu2O Photonic Crystals on Textile Substrates for Environmental Dyeing with Excellent Antibacterial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cu2O Microspheres
2.3. Preparation of Cu2O Structural Colored Fabric
2.4. Characterization Methods
2.5. Characterization of Structural Color and Its Color Fastness
2.6. Antimicrobial Testing
- Y—inhibition rate of the sample to be tested (%);
- Wb—concentration of live bacteria after 18 h of the blank sample (CFU/mL);
- Wc—concentration of live bacteria after 18 h of the sample to be tested (CFU/mL).
3. Results and Discussion
3.1. SEM Images of Cu2O Structural Colored Fabric
3.2. XRD Analysis and Size Distribution of Cu2O Microspheres
3.3. Color Properties of Cu2O Structural Colored Fabric
3.4. Colorfastness of Cu2O Structural Colored Fabric
3.5. Antibacterial Properties of Cu2O Structural Colored Fabric
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daqiqeh Rezaei, S.; Dong, Z.; You En Chan, J.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.-W.; Mortensen, N.A.; Yang, J.K.W. Nanophotonic Structural Colors. ACS Photonics 2021, 8, 18–33. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Zhu, K.; Fang, C.; Pu, M.; Song, J.; Wang, D.; Zhou, X. Recent Advances in Photonic Crystal with Unique Structural Colors: A Review. J. Mater. Sci. Technol. 2023, 141, 78–99. [Google Scholar] [CrossRef]
- Colombini, M.P.; Andreotti, A.; Baraldi, C.; Degano, I.; Łucejko, J.J. Colour Fading in Textiles: A Model Study on the Decomposition of Natural Dyes. Microchem. J. 2007, 85, 174–182. [Google Scholar] [CrossRef]
- Venil, C.K.; Velmurugan, P.; Dufossé, L.; Renuka Devi, P.; Veera Ravi, A. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. J. Fungi 2020, 6, 68. [Google Scholar] [CrossRef] [PubMed]
- Tsalsabila, A.; Dabur, V.A.; Budiarso, I.J.; Wustoni, S.; Chen, H.-C.; Birowosuto, M.D.; Wibowo, A.; Zeng, S. Progress and Outlooks in Designing Photonic Biosensor for Virus Detection. Adv. Opt. Mater. 2024, 12, 2400849. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z. Bio-Inspired Variable Structural Color Materials. Chem. Soc. Rev. 2012, 41, 3297–3317. [Google Scholar] [CrossRef]
- Baek, K.; Kim, Y.; Mohd-Noor, S.; Hyun, J.K. Mie Resonant Structural Colors. ACS Appl. Mater. Interfaces 2020, 12, 5300–5318. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Zhang, L.; Wang, Y.; Wang, Z.; Zhao, K.; Wu, S.; Zhang, S.; Tok, A.I.Y. Multicolored Photonic Crystal Carbon Fiber Yarns and Fabrics with Mechanical Robustness for Thermal Management. ACS Appl. Mater. Interfaces 2019, 11, 32261–32268. [Google Scholar] [CrossRef]
- Dumanli, A.G.; Savin, T. Recent Advances in the Biomimicry of Structural Colours. Chem. Soc. Rev. 2016, 45, 6698–6724. [Google Scholar] [CrossRef]
- Landsiedel, J.; Root, W.; Schramm, C.; Menzel, A.; Witzleben, S.; Bechtold, T.; Pham, T. Tunable Colors and Conductivity by Electroless Growth of Cu/Cu2O Particles on Sol-Gel Modified Cellulose. Nano Res. 2020, 13, 2658–2664. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Q.; Wang, X.; Liu, G.; Chai, L.; Zhou, L.; Shao, J.; Yin, Y. Structural Coloration: Shear-Induced Assembly of Liquid Colloidal Crystals for Large-Scale Structural Coloration of Textiles. Adv. Funct. Mater. 2021, 31, 2170133. [Google Scholar] [CrossRef]
- Lee, T.; Kim, J.; Koirala, I.; Yang, Y.; Badloe, T.; Jang, J.; Rho, J. Nearly Perfect Transmissive Subtractive Coloration through the Spectral Amplification of Mie Scattering and Lattice Resonance. ACS Appl. Mater. Interfaces 2021, 13, 26299–26307. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lee, C.H.; Kan, C.-W.; Jin, S. Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. Nanomaterials 2020, 10, 1133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, S.; Liu, L.; Guan, G.; Lu, X.; Sun, X.; Peng, H. The Continuous Fabrication of Mechanochromic Fibers. J. Mater. Chem. C 2016, 4, 2127–2133. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Y.; Liu, G.; Fan, Q.; Shao, J. Study on the Correlations between the Structural Colors of Photonic Crystals and the Base Colors of Textile Fabric Substrates. Dye. Pigment. 2016, 133, 435–444. [Google Scholar] [CrossRef]
- Liu, G.; Han, P.; Wu, Y.; Li, H.; Zhou, L. The Preparation of Monodisperse P(St-BA-MAA)@disperse Dye Microspheres and Fabrication of Patterned Photonic Crystals with Brilliant Structural Colors on White Substrates. Opt. Mater. 2019, 98, 109503. [Google Scholar] [CrossRef]
- Sarwar, N.; Kumar, M.; Humayoun, U.B.; Dastgeer, G.; Nawaz, A.; Yoon, D. Nano Coloration and Functionalization of Cellulose Drive through In-Situ Synthesis of Cross-Linkable Cu2O Nano-Cubes: A Green Synthesis Route for Sustainable Clothing System. Mater. Sci. Eng. B 2023, 289, 116284. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, L.; Zhang, G.; Li, Y.; Chai, L.; Fan, Q.; Shao, J. Fabrication of Patterned Photonic Crystals with Brilliant Structural Colors on Fabric Substrates Using Ink-Jet Printing Technology. Mater. Des. 2017, 114, 10–17. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, L.; Zhang, Y.; Chen, Y.; Liu, X. Construction of Cu2O Single Crystal Nanospheres Coating with Brilliant Structural Color and Excellent Antibacterial Properties. Opt. Mater. 2023, 138, 113724. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, L.; Wu, Y.; Wang, C.; Fan, Q.; Shao, J. Optical Properties of Three-Dimensional P(St-MAA) Photonic Crystals on Polyester Fabrics. Opt. Mater. 2015, 42, 72–79. [Google Scholar] [CrossRef]
- Kyzioł, A.; Łukasiewicz, S.; Sebastian, V.; Kuśtrowski, P.; Kozieł, M.; Majda, D.; Cierniak, A. Towards Plant-Mediated Chemistry—Au Nanoparticles Obtained Using Aqueous Extract of Rosa damascena and Their Biological Activity In Vitro. J. Inorg. Biochem. 2021, 214, 111300. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Qiu, Y.; Nan, F.; Hao, Z.; Zhou, L.; Wang, Q. Synthesis and Largely Enhanced Nonlinear Refraction of Au@Cu2O Core-Shell Nanorods. Wuhan Univ. J. Nat. Sci. 2018, 23, 418–423. [Google Scholar] [CrossRef]
- Montes, C.; Villaseñor, M.J.; Ríos, Á. Analytical Control of Nanodelivery Lipid-Based Systems for Encapsulation of Nutraceuticals: Achievements and Challenges. Trends Food Sci. Technol. 2019, 90, 47–62. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Liu, G.; Chai, L.; Fan, Q.; Shao, J. Study on the Fabrication of Composite Photonic Crystals with High Structural Stability by Co-Sedimentation Self-Assembly on Fabric Substrates. Appl. Surf. Sci. 2018, 444, 145–153. [Google Scholar] [CrossRef]
- Rockstuhl, C.; Lederer, F. Suppression of the Local Density of States in a Medium Made of Randomly Arranged Dielectric Spheres. Phys. Rev. B 2009, 79, 132202. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J. Liquid Photonic Crystal Detection Reagent for Reliable Sensing of Cu2+ in Water. RSC Adv. 2020, 10, 10972–10979. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Wang, C.-F.; Chen, S. Construction of Hydrogen-Bond-Assisted Crack-Free Photonic Crystal Films and Their Performance on Fluorescence Enhancement Effect. Macromol. Mater. Eng. 2017, 302, 1700013. [Google Scholar] [CrossRef]
- Ullah, K.; Liu, X.; Yadav, N.P.; Habib, M.; Song, L.; García-Cámara, B. Light Scattering by Subwavelength Cu2O Particles. Nanotechnology 2017, 28, 134002. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Shang, L.; Zhao, Y. Structural Color Materials from Natural Polymers. Adv. Mater. Technol. 2021, 6, 2100296. [Google Scholar] [CrossRef]
- Cho, Y.; Huh, J.-H.; Kim, K.; Lee, S. Scalable, Highly Uniform, and Robust Colloidal Mie Resonators for All-Dielectric Soft Meta-Optics. Adv. Opt. Mater. 2019, 7, 1801167. [Google Scholar] [CrossRef]
- Shi, X.; He, J.; Wu, L.; Chen, S.; Lu, X. Rapid Fabrication of Robust and Bright Colloidal Amorphous Arrays on Textiles. J. Coat. Technol. Res. 2020, 17, 1033–1042. [Google Scholar] [CrossRef]
- Bi, J.; Wu, S.; Xia, H.; Li, L.; Zhang, S. Synthesis of Monodisperse Single-Crystal Cu2O Spheres and Their Application in Generating Structural Colors. J. Mater. Chem. C 2019, 7, 4551–4558. [Google Scholar] [CrossRef]
- ISO 105-X12:2001; Textiles—Tests for Colour Fastness—Part X12: Colour Fastness to Rubbing. ISO: Geneva, Switzerland, 2001.
- GB/T 8427-2019; Textiles—Tests for Color Fastness—Color Fastness to Artificial Light: Xenon Arc. Standardization Administration of China: Beijing, China, 2019.
- GB/T 20944.3-2008; Evaluation of Antimicrobial Performance of Textiles Part 3_Oscillation Method Standard. Standardization Administration of the People’s Republic of China: Beijing, China, 2008. Available online: https://www.doc88.com/p-9748234087763.html (accessed on 8 September 2024).
- Popov, S.; Saphier, O.; Popov, M.; Shenker, M.; Entus, S.; Shotland, Y.; Saphier, M. Factors Enhancing the Antibacterial Effect of Monovalent Copper Ions. Curr. Microbiol. 2020, 77, 361–368. [Google Scholar] [CrossRef] [PubMed]
Element | Atomic Number | Percentage of Elements (%) |
---|---|---|
Cu | 29 | 89.50 |
O | 8 | 10.50 |
100.00 |
Sample | Inhibition Rates of S. aureus/% | Inhibition Rates of E. coli/% | ||||||
---|---|---|---|---|---|---|---|---|
Before Washing | CV | After Washing | CV | Before Washing | CV | After Washing | CV | |
Untreated | / | / | / | / | / | / | / | / |
Cu2O structural fabric | 99.90% | 0.5% | 92.40% | 4.5% | 99.90% | 0.5% | 94.53% | 5.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Zhou, C.; Shao, Y.; Sun, Z.; Zhu, G.; Khabibulla, P. Construction of Patterned Cu2O Photonic Crystals on Textile Substrates for Environmental Dyeing with Excellent Antibacterial Properties. Nanomaterials 2024, 14, 1478. https://doi.org/10.3390/nano14181478
Yin Z, Zhou C, Shao Y, Sun Z, Zhu G, Khabibulla P. Construction of Patterned Cu2O Photonic Crystals on Textile Substrates for Environmental Dyeing with Excellent Antibacterial Properties. Nanomaterials. 2024; 14(18):1478. https://doi.org/10.3390/nano14181478
Chicago/Turabian StyleYin, Zhen, Chunxing Zhou, Yiqin Shao, Zhan Sun, Guocheng Zhu, and Parpiev Khabibulla. 2024. "Construction of Patterned Cu2O Photonic Crystals on Textile Substrates for Environmental Dyeing with Excellent Antibacterial Properties" Nanomaterials 14, no. 18: 1478. https://doi.org/10.3390/nano14181478
APA StyleYin, Z., Zhou, C., Shao, Y., Sun, Z., Zhu, G., & Khabibulla, P. (2024). Construction of Patterned Cu2O Photonic Crystals on Textile Substrates for Environmental Dyeing with Excellent Antibacterial Properties. Nanomaterials, 14(18), 1478. https://doi.org/10.3390/nano14181478