Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization Techniques
3. Results
3.1. Characterization of the Degree of Crystallinity by XRD
3.2. Calculation of J-O Parameters from Absorption Spectra
3.3. Fluorescence Spectroscopy
3.4. Comparison of the Glass Crystallization Process with the Entry of Er3+ into the Crystal Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atta, D.; Abdelghany, A.M.; Awad, W.M. Structural, optical properties, and laser spectroscopy of erbium-doped low-melting borate glasses. Ceram. Int. 2024, 50, 26528–26538. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Shen, M.; Zhu, S.; Wang, F. Glass–ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microstructure. Corros. Sci. 2013, 74, 178–186. [Google Scholar] [CrossRef]
- Feng, M.; Jiang, C.; Chen, M.; Zhu, S.; Wang, F. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation. J. Mater. Sci. Technol. 2022, 120, 139–149. [Google Scholar] [CrossRef]
- Cheng, D.; Wei, C.; Huang, Y.; Zhang, Z.; Wang, D.; Liu, Z.; Newman, M.; Ma, T.; Chueh, Y.-H.; Zhang, X.; et al. Additive manufacturing of lithium aluminosilicate glass-ceramic/metal 3D electronic components via multiple material laser powder bed fusion. Addit. Manuf. 2022, 49, 102481. [Google Scholar] [CrossRef]
- Lin, R.; Deng, C.; Li, X.; Liu, Y.; Zhang, M.; Qin, C.; Yao, Q.; Wang, L.; Wu, C. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics 2019, 9, 6300–6313. [Google Scholar] [CrossRef]
- Milewska, K.; Maciejewski, M.; Synak, A.; Łapiński, M.; Mielewczyk-Gryń, A.; Sadowski, W.; Kościelska, B. From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2 Glass and Glass-Ceramics Doped with Eu3+ Ions. Materials 2021, 14, 4490. [Google Scholar] [CrossRef]
- Yongsheng, D.; Jie, M.; Yu, S.; Xuefeng, Z.; Hongxia, Z.; Hua, C.; Shunli, O.; Li, B. Crystallization characteristics and corrosion properties of slag glass-ceramic prepared from blast furnace slag containing rare earth. J. Non-Cryst. Solids 2020, 532, 119880. [Google Scholar] [CrossRef]
- Freire, R.V.M.; Coelho, D.M.A.; Maciel, L.G.; Jesus, L.T.; Freire, R.O.; dos Anjos, J.V.; Junior, S.A. Luminescent Supramolecular Metallogels: Drug Loading and Eu(III) as Structural Probe. Chem. Eur. J. 2024, 30, 33. [Google Scholar] [CrossRef]
- Cicconi, M.R.; Deng, H.; Otsuka, T.; Telakula Mahesh, A.; Khansur, N.H.; Hayakawa, T.; de Ligny, D. Photoluminescence Study of Undoped and Eu-Doped Alkali-Niobate Aluminosilicate Glasses and Glass-Ceramics. Materials 2024, 17, 2283. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Qie, S.; Su, S.; Hu, M. Composite Eu@Cd-CP as a fluorescent probe for the detection of some food additives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 317, 124401. [Google Scholar] [CrossRef]
- Truong, N.M.P.; Sedano, M.; Durán, A.; Balda, R.; Pascual, M.J.; Klement, R. Er/Yb co-doped LiYF4 transparent oxyfluoride glass-ceramics with up-conversion optical properties. Ceram. Int. 2023, 49, 41201–41209. [Google Scholar] [CrossRef]
- Leontyev, A.V.; Nurtdinova, L.A.; Mityushkin, E.O.; Shmelev, A.G.; Zharkov, D.K.; Chuklanov, A.P.; Nurgazizov, N.I.; Nikiforov, V.G. Polarized luminescence in single upconversion NaYbF4:Er rods. New J. Chem. 2024, 48, 14029–14038. [Google Scholar] [CrossRef]
- Bungla, M.; Tyagi, M.; Ganguli, A.K.; Prasad, P.N. A NaBiF4:Gd/Tb nanoscintillator for high-resolution X-ray imaging. J. Mater. Chem. C 2024, 12, 9595–9605. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96. [Google Scholar] [CrossRef]
- Dyussembekova, S.; Trusova, E.; Kichanov, S.; Podbolotov, K.; Kozlenko, D. A Study of PbF2 Nanoparticles Crystallization Mechanism in Mixed Oxyde-Fluoride Glasses. Ceramics 2023, 6, 1508–1516. [Google Scholar] [CrossRef]
- Kichanov, S.E.; Kozlenko, D.P.; Gorshkova, Y.E.; Rachkovskaya, G.E.; Zakharevich, G.B.; Savenko, B.N. Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses. J. Nanoparticle Res. 2018, 20, 54. [Google Scholar] [CrossRef]
- Luo, J.; Xiao, Z.; Zeng, L.; Xu, J.; Liu, J.; Li, G.; Li, C.; He, H.; Tang, J. Germanate-based oxyfluoride transparent glass-ceramic embedded with Tm3+:Ca2YbF7 nanocrystals for high-performance optical thermometer. Ceram. Int. 2023, 49, 4193–4203. [Google Scholar] [CrossRef]
- He, Z.; Gao, Y.; Qiu, J. Effect of concentration of Er3+ on up-conversion luminescence in NaYF4 embedded oxy-fluoride glass-ceramics under 1550 nm excitation. Ceram. Int. 2024, 50, 19302–19307. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ishii, Y.; Sukenaga, S.; Ohara, K. Ultrafast Nanocrystallization of BaF2 in Oxyfluoride Glasses with Crystal-like Nanostructures: Implications for Upconversion Fiber Devices. ACS Appl. Nano Mater. 2022, 5, 4281–4292. [Google Scholar] [CrossRef]
- Hu, F.; Chen, W.; Jiang, Y.; Song, W.; Wei, R.; Guo, H. Tm3+-doped Na0.5-xYb0.5+xF2+2x self-crystallization glass ceramics: Microstructure and optical thermometry properties. J. Lumin. 2019, 214, 116558. [Google Scholar] [CrossRef]
- Babu, S.; Seshadri, M.; Balakrishna, A.; Reddy Prasad, V.; Ratnakaram, Y.C. Study of multicomponent fluoro-phosphate based glasses: Ho3+ as a luminescence center. Phys. B Condens. Matter 2015, 479, 26–34. [Google Scholar] [CrossRef]
- Enríquez, E.; Berges, C.; Fuertes, V.; Gallego, A.; Naranjo, J.A.; Herranz, G.; Fernández, J.F. Ceramic Injection Moulding of engineered glass-ceramics: Boosting the rare-earth free photoluminescence. Ceram. Int. 2020, 46, 9334–9341. [Google Scholar] [CrossRef]
- Marcondes, L.M.; Rodrigues, L.; Ramos da Cunha, C.; Gonçalves, R.R.; de Camargo, A.S.S.; Cassanjes, F.C.; Poirier, G.Y. Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications. J. Lumin. 2019, 213, 224–234. [Google Scholar] [CrossRef]
- Jain, P.; Aida, T.; Motosuke, M. Fluorescence Anisotropy as a Temperature-Sensing Molecular Probe Using Fluorescein. Micromachines 2021, 12, 1109. [Google Scholar] [CrossRef] [PubMed]
- Shánělová, J.; Honcová, P.; Málek, J.; Perejón, A.; Pérez-Maqueda, L.A. Direct comparison of surface crystal growth kinetics in chalcogenide glass measured by microscopy and DSC. J. Am. Ceram. Soc. 2023, 106, 6051–6061. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, Y.; Zhu, C.; Liu, S.; Liu, H.; Zhang, Y.; Yue, Y. Optical bandgap and luminescence in Er3+ doped oxyfluoro-germanate glass-ceramics. J. Non-Cryst. Solids 2021, 555, 120533. [Google Scholar] [CrossRef]
- Wu, J.; Kermani, M.; Cao, L.; Wang, B.; Dai, Z.; Fu, L.; Hu, C.; Grasso, S. Rapid crystallization of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics via ultra-fast high-temperature sintering (UHS). Int. J. Appl. Ceram. Technol. 2023, 20, 2125–2130. [Google Scholar] [CrossRef]
- Zaman, F.; Srisittipokakun, N.; Rooh, G.; Khattak, S.A.; Singkiburin, N.; Kim, H.J.; Sangwaranatee, N.; Kaewkhao, J. Investigation of Li2O–Gd2O3–MO–B2O3–Nd2O3 (MO=Ba/Bi) glasses for laser applications by Judd–Oflet (J–O) theory. J. Lumin. 2019, 215, 116639. [Google Scholar] [CrossRef]
- Liang, H.; Liu, S.; Zhang, P.; Lei, W.; Luo, Z.; Lu, A. Er3+/Yb3+ co-doped SiO2-Al2O3-CaO-CaF2 glass: Structure, J-O analysis and fluorescent properties. Mater. Sci. Eng. B 2021, 264, 114919. [Google Scholar] [CrossRef]
- Wang, F.; Tian, Y.; Jing, X.; Cai, M.; Zhang, J.; Xu, S. Effect of TeO2 addition on thermal stabilities and 2.7 μm emission properties of fluoroaluminate–tellurite glass. J. Quant. Spectrosc. Radiat. Transf. 2015, 165, 93–101. [Google Scholar] [CrossRef]
- Riahi, M.; Alizadeh, P.; Soltani, M. The impact of erbium ion on the crystallization process of yttrium fluorosilicate glass ceramics. J. Non-Cryst. Solids 2021, 553, 120499. [Google Scholar] [CrossRef]
- Zhao, D.; Qiao, X.; Fan, X.; Wang, M. Local vibration around rare earth ions in SiO2–PbF2 glass and glass ceramics using Eu3+ probe. Phys. B Condens. Matter 2007, 395, 10–15. [Google Scholar] [CrossRef]
- Keeling-Tucker, T.; Brennan, J.D. Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol–Gel-Derived Nanocomposite Materials. Chem. Mater. 2001, 13, 3331–3350. [Google Scholar] [CrossRef]
- Tuyen, V.P.; Sengthong, B.; Quang, V.X.; Van Do, P.; Van Tuyen, H.; Xuan Hung, L.; Thanh, N.T.; Nogami, M.; Hayakawa, T.; Huy, B.T. Dy3+ ions as optical probes for studying structure of boro-tellurite glasses. J. Lumin. 2016, 178, 27–33. [Google Scholar] [CrossRef]
S | Diffraction Peak S1 (2θ = 26°) | Amorphous Halo S2 | Crystallinity (%) | |
---|---|---|---|---|
Time (h) | ||||
0.5 | 87.1 | 294.7 | 29.6 | |
1.0 | 159.4 | 520.5 | 30.6 | |
1.5 | 152.1 | 493.2 | 30.8 | |
2.0 | 178.6 | 579.7 | 30.8 | |
2.5 | 198.7 | 626.6 | 31.7 | |
3.0 | 189.0 | 585.9 | 32.2 |
U(λ = 2,4,6) | 4S3/2 → 4I15/2 | 4F7/2 → 4I15/2 | 2H11/2 → 4I15/2 | 4F9/2 → 4I15/2 | 4I9/2 → 4I15/2 | 4I11/2 → 4I15/2 |
---|---|---|---|---|---|---|
U(2) | 0 | 0 | 0.7158 | 0 | 0 | 0.0276 |
U(4) | 0 | 0.1465 | 0.4138 | 0.5511 | 0.1587 | 0.0002 |
U(6) | 0.2225 | 0.6272 | 0.0927 | 0.4621 | 0.0072 | 0.3924 |
Sample | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | Ω6 (10−20 cm2) |
---|---|---|---|
0.5 h | 2.31 | 1.24 | 0.84 |
1.0 h | 1.42 | 0.94 | 0.75 |
1.5 h | 1.27 | 0.89 | 0.73 |
2.0 h | 1.11 | 0.84 | 0.72 |
2.5 h | 1.03 | 0.81 | 0.70 |
3.0 h | 0.93 | 0.78 | 0.70 |
0.5 h | 1.0 h | 1.5 h | 2.0 h | 2.5 h | 3.0 h | |
---|---|---|---|---|---|---|
Ratiolum | 4.98 | 5.02 | 5.01 | 4.96 | 4.99 | 5.02 |
Ratioobv | 2.77 | 3.76 | 4.01 | 4.41 | 4.55 | 4.91 |
Time | 0.5 h | 1.0 h | 1.5 h | 2.0 h | 2.5 h | 3.0 h |
---|---|---|---|---|---|---|
X | 30.7% | 75.4% | 82.9% | 90.9% | 94.9% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Cui, W.; Ren, S.; Yang, J.; Tian, J.; Xia, H.; Shen, J.; Ren, G. Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics. Nanomaterials 2024, 14, 1479. https://doi.org/10.3390/nano14181479
Chen Z, Cui W, Ren S, Yang J, Tian J, Xia H, Shen J, Ren G. Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics. Nanomaterials. 2024; 14(18):1479. https://doi.org/10.3390/nano14181479
Chicago/Turabian StyleChen, Zhixin, Wenzhe Cui, Sijun Ren, Ju Yang, Jiayu Tian, Haitao Xia, Jiajing Shen, and Guozhong Ren. 2024. "Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics" Nanomaterials 14, no. 18: 1479. https://doi.org/10.3390/nano14181479
APA StyleChen, Z., Cui, W., Ren, S., Yang, J., Tian, J., Xia, H., Shen, J., & Ren, G. (2024). Investigating the Mechanism of Rare-Earth Ion Incorporation into Glass–Ceramic Crystal Phases through Er3+ Ion Probe Characteristics. Nanomaterials, 14(18), 1479. https://doi.org/10.3390/nano14181479