A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics
Abstract
:1. Introduction
2. Design and Results
3. Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tirkey, M.M.; Gupta, N. A novel ultrathin checkerboard inspired ultrawideband metasurface absorber. IEEE Trans. Electromagn. Compat. 2021, 64, 66–74. [Google Scholar] [CrossRef]
- Zhou, F.K.; Tan, R.Y.; Fang, W.; Fu, Y.F.; Ji, J.D.; Zhou, J.-T.; Chen, P. An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands. Results Phys. 2021, 30, 104811. [Google Scholar]
- Khan, H.A.; Huang, C.; Xiao, Q.; Abbas, S.M. Polarization-dependent coding metasurface with switchable transmission and RCS reduction bands. Micromachines 2022, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Li, X.; Liu, Z.; Zhao, J.; Wang, W.; Li, S.; Zhang, W. Polarization-multiplexed metasurface enabled tri-functional imaging. Opt. Lett. 2023, 48, 5683–5686. [Google Scholar] [PubMed]
- Fang, S.; Deng, L.; Zhang, P.; Qiu, L.; Xie, H.; Huang, S.; Du, J.; Wang, Z. Dual-function flexible metasurface for absorption and polarization conversion and its application for radar cross section reduction. J. Appl. Phys. 2022, 131, 135106. [Google Scholar]
- Zhen, Q.; Mao, Z.; Cui, J.; Guo, M.; Chernogor, L.F.; Jin, Z.; Zheng, Y.; Liu, T. RCS reduction effect based on transparent and flexible polarization conversion metasurface arrays. Results Phys. 2023, 52, 106886. [Google Scholar]
- Costa, F.; Monorchio, A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012, 60, 2740–2747. [Google Scholar]
- Ramachandran, T.; Faruque, M.R.I.; Islam, M.T. A dual band left-handed metamaterial-enabled design for satellite applications. Results Phys. 2020, 16, 102942. [Google Scholar]
- Shan, X.; Li, Z.; Dai, Q.; Li, J.; Fu, R.; He, Z.; Tao, J.; Zheng, G. Metasurfaces with single-sized antennas for reconstructing full-color holographic images without cross talk. Opt. Lett. 2021, 46, 5417–5420. [Google Scholar] [CrossRef]
- Hayat, B.; Zhang, J.; Majeed, A.; Ishfaq, M.; Khan, A.; Ahmad, S. A low profile wideband linear to circular polarization converter metasurface with wide axial ratio and high ellipticity. Electronics 2024, 13, 352. [Google Scholar] [CrossRef]
- Sarabandi, K.; Behdad, N. A frequency selective surface with miniaturized elements. IEEE Trans. Antennas Propag. 2007, 55, 1239–1245. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, S.; Jiang, Z.; Yan, L.; Wang, B.-Z. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 591–595. [Google Scholar] [CrossRef]
- Cong, L.; Tan, S.; Yahiaoui, R.; Yan, F.; Zhang, W.; Singh, R. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces. Appl. Phys. Lett. 2015, 106, 031101. [Google Scholar] [CrossRef]
- Munk, B.A.; Munk, P.; Pryor, J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans. Antennas Propag. 2007, 55, 186–193. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, J.; Kong, S.; Hu, S. Integrated coding metasurface for multi-functional millimeter-wave manipulations. Opt. Lett. 2019, 44, 2855–2858. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Han, B.; Yuan, Q.; Li, Y.; He, W.; Hao, J.; Wu, L.; Yao, J. Ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on undoped silicon. Results Phys. 2023, 51, 106711. [Google Scholar] [CrossRef]
- Wang, R.; Yue, S.; Zhang, Z.; Hou, Y.; Zhao, H.; Qu, S.; Li, M.; Zhang, Z. Broadband perfect absorber in the visible range based on metasurface composite structures. Materials 2022, 15, 2612. [Google Scholar] [CrossRef]
- Li, S.J.; Cao, X.Y.; Gao, J.; Liu, T.; Zheng, Y.J.; Zhang, Z. Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Trans. Antennas Propag. 2015, 63, 5155–5160. [Google Scholar] [CrossRef]
- Shen, X.; Cui, T.J.; Zhao, J.; Ma, H.F.; Jiang, W.X.; Li, H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 2011, 19, 9401–9407. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hwang, J.S.; Yoo, Y.J.; Khuyen, B.X.; Rhee, J.Y.; Chen, X.; Lee, Y. Ultrathin microwave metamaterial absorber utilizing embedded resistors. J. Phys. D Appl. Phys. 2017, 50, 405110. [Google Scholar] [CrossRef]
- Khan, H.A.; Zhang, J.W.; Liang, J.C.; Xia, J.; Zhang, J. A conformal coding metasurface for dual polarization conversion and radar cross section (RCS) reduction. J. Opt. 2023, 25, 125102. [Google Scholar] [CrossRef]
- Xu, H.-X.; Tang, S.; Sun, C.; Li, L.; Liu, H.; Yang, X.; Yuan, F.; Sun, Y. High-efficiency broadband polarization-independent superscatterer using conformal metasurfaces. Photonics Res. 2018, 6, 782–788. [Google Scholar] [CrossRef]
- Khan, H.A.; Rafique, U.; Abbas, S.M.; Ahmed, F.; Huang, Y.; Uqaili, J.A.; Mahmoud, A. Polarization-independent ultra wideband RCS reduction conformal coding metasurface based on integrated polarization conversion-diffusion-absorption mechanism. Photonics 2023, 10, 281. [Google Scholar] [CrossRef]
- Ran, Y.; Shi, L.; Wu, S.; Li, J.; Jin, X.; Hou, Z.; Fan, B.; Wang, J. Optically transparent ultrawideband electromagnetic stealth metasurface for microwave absorption and scattering. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2412–2416. [Google Scholar] [CrossRef]
- Bai, X.; Mei, Z.; Zhang, J.; Xu, W.; Lin, W.; Niu, T. An Ultra-Wideband, Wide-Angle and Transparent Microwave Absorber Using Indium Tin Oxide Conductive Films. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1543–1547. [Google Scholar] [CrossRef]
- Sheokand, H.; Singh, G.; Ghosh, S.; Ramkumar, J.; Ramakrishna, S.A.; Srivastava, K.V. An optically transparent broadband microwave absorber using interdigital capacitance. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 113–117. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, H.; Zhang, T.; Yu, S.; Guo, P.; Wang, Y.; Yang, Z. Optical and electrical properties of ITO film on flexible fluorphlogopite substrate. Ceram. Int. 2021, 47, 16980–16985. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, J.; Cao, W.; Yuan, W.; Ke, J.; Yang, L.; Cheng, Q.; Cui, T. Transparently curved metamaterial with broadband millimeter wave absorption. Photon. Res. 2019, 7, 478–485. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Shi, L.; Xue, S.; Ran, Y.; Li, J.; Liu, Y. Ultra-wideband, optically transparent, and flexible microwave metasurface absorber. Opt. Mater. Express 2021, 11, 2206–2218. [Google Scholar] [CrossRef]
- Dong, L.; Si, L.; Xu, H.; Shen, Q.; Lv, X.; Zhuang, Y.; Zhang, Q. Rapid customized design of a conformal optical transparent metamaterial absorber based on the circuit analog optimization method. Opt. Express 2022, 30, 8303–8316. [Google Scholar] [CrossRef] [PubMed]
- Shou, H.; Feng, J.; Qi, B.; Qiao, L.; Niu, T.; Mei, Z. A wideband absorber working in the L-and S-bands based on magnetic materials. Appl. Phys. Lett. 2023, 122, 252101. [Google Scholar] [CrossRef]
- Fu, C.; Yu, W.; Zhang, L.; Zhang, Y.; Zhang, X.; Wang, X.; Liu, X.; Han, L. Design and analysis of a dual-broadband microwave metasurface absorber with flexibility and transparency. Opt. Quantum Electron. 2024, 56, 291. [Google Scholar] [CrossRef]
- Jing, H.; Duan, J.; Wei, Y.; Hao, J.; Qu, Z.; Wang, J.; Zhang, B. An ultra-broadband flexible polarization-insensitive microwave metamaterial absorber. Mater. Res. Express 2022, 9, 025802. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, B.; Zhang, J.; Khan, A.; Abbas, S.M.; Majeed, A.; Al-Bawri, S.S. A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics. Nanomaterials 2024, 14, 1507. https://doi.org/10.3390/nano14181507
Hayat B, Zhang J, Khan A, Abbas SM, Majeed A, Al-Bawri SS. A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics. Nanomaterials. 2024; 14(18):1507. https://doi.org/10.3390/nano14181507
Chicago/Turabian StyleHayat, Babar, Jinling Zhang, Adil Khan, Syed Muzahir Abbas, Abdul Majeed, and Samir Salem Al-Bawri. 2024. "A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics" Nanomaterials 14, no. 18: 1507. https://doi.org/10.3390/nano14181507
APA StyleHayat, B., Zhang, J., Khan, A., Abbas, S. M., Majeed, A., & Al-Bawri, S. S. (2024). A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics. Nanomaterials, 14(18), 1507. https://doi.org/10.3390/nano14181507