Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement
Abstract
:1. Introduction
2. Cuboid Model and Resonances
3. Scattering and Interference
4. Lattice and Dispersion Effects
4.1. Collective Resonances
4.2. hBN Dispersion
4.3. hBN Nanoantenna Pair
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novotny, L.; Hecht, B. Principles of Nanooptics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Atwater, H.A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Prodan, E.; Radloff, C.; Halas, N.J.; Nordlander, P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Babicheva, V.E. Optical processes behind plasmonic applications. Nanomaterials 2023, 13, 1270. [Google Scholar] [CrossRef] [PubMed]
- Lukyanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic structures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, J.M.; Ma, P.J.; Guan, W.; Nam, S. Near-Field Nano-Optical Imaging of van der Waals Materials. Adv. Physics Res. 2023, 2, 2300009. [Google Scholar] [CrossRef]
- Bosomtwi, D.; Babicheva, V.E. Beyond conventional sensing: Hybrid plasmonic metasurfaces and bound states in the continuum. Nanomaterials 2023, 13, 1261. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qin, L.; Qi, D.-X.; Gao, F.; Peng, R.-W.; Zou, J.; Wang, Q.-J.; Wang, M. Tunable electric and magnetic resonances in multilayered metal/dielectric nanoplates at optical frequencies. J. Phys. D Appl. Phys. 2010, 43, 345102. [Google Scholar] [CrossRef]
- Li, D.; Qin, L.; Xiong, X.; Peng, R.-W.; Hu, Q.; Ma, G.-B.; Zhou, H.-S.; Wang, M. Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates. Opt. Express 2011, 19, 22942–22949. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, J.-J.; Zhang, Q.; Qin, F.; Cai, X.; Ye, F. Dual-Band Unidirectional Emission in a Multilayered Metal−Dielectric Nanoantenna. ACS Omega 2017, 2, 774–783. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. All-Dielectric Optical Nanoantennas. Opt. Express 2012, 20, 20599–20604. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, S.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Bris Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef]
- Staude, I.; Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Evlyukhin, A.B. Mie-Resonant Metaphotonics. Adv. Opt. Photonics 2024, 16, 539–658. [Google Scholar] [CrossRef]
- Staude, I.; Miroshnichenko, A.E.; Decker, M.; Fofang, N.T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T.S.; Neshev, D.N.; Brener, I.; et al. Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks. ACS Nano 2013, 7, 7824–7832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, R.; Xie, Y.M.; Ruan, Q.; Yang, B.; Wang, J.; Lin, H.Q. Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties. Adv. Mater. 2015, 27, 7432–7439. [Google Scholar] [CrossRef]
- Drachev, V.P.; Podolskiy, V.A.; Kildishev, A.V. Hyperbolic metamaterials: New physics behind a classical problem. Opt. Express 2013, 21, 15048–15064. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.N.S.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V.M. Topological transitions in metamaterials. Science 2012, 336, 205–209. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Kidwai, O.; Sipe, J.E. Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt. Express 2013, 21, 14982–14987. [Google Scholar] [CrossRef]
- Jacob, Z.; Smolyaninov, I.I.; Narimanov, E.E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett. 2012, 100, 181105. [Google Scholar] [CrossRef]
- Jacob, Z.; Kim, J.-Y.; Naik, G.; Boltasseva, A.; Narimanov, E.; Shalaev, V. Engineering photonic density of states using metamaterials. Appl. Phys. B 2010, 100, 215–218. [Google Scholar] [CrossRef]
- Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686. [Google Scholar] [CrossRef] [PubMed]
- Simovski, C.; Maslovski, S.; Nefedov, I.; Tretyakov, S. Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications. Opt. Express 2013, 21, 14988–15013. [Google Scholar] [CrossRef]
- Chebykin, A.V.; Babicheva, V.E.; Iorsh, I.V.; Orlov, A.A.; Belov, P.A.; Zhukovsky, S.V. Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials. Phys. Rev. A 2016, 93, 033855. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Shalaginov, M.Y.; Ishii, S.; Boltasseva, A.; Kildishev, A.V. Finite-width plasmonic waveguides with hyperbolic multilayer cladding. Opt. Express 2015, 23, 9681–9689. [Google Scholar] [CrossRef]
- Babicheva, V.E. Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides. J. Opt. 2017, 19, 124013. [Google Scholar] [CrossRef]
- Ishii, S.; Shalaginov, M.Y.; Babicheva, V.E.; Boltasseva, A.; Kildishev, A.V. Plasmonic waveguides cladded by hyperbolic metamaterials. Opt. Lett. 2014, 39, 4663–4666. [Google Scholar] [CrossRef] [PubMed]
- Babicheva, V.E.; Shalaginov, M.Y.; Ishii, S.; Boltasseva, A.; Kildishev, A.V. Long-range plasmonic waveguides with hyperbolic cladding. Opt. Express 2015, 23, 31109–31119. [Google Scholar] [CrossRef]
- West, P.R.; Kinsey, N.; Ferrera, M.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Adiabatically Tapered Hyperbolic Metamaterials for Dispersion Control of High-k Waves. Nano Lett. 2015, 15, 498–505. [Google Scholar] [CrossRef]
- Yao, J.; Yang, X.; Yin, X.; Bartal, G.; Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl. Acad. Sci. USA 2011, 108, 11327–11331. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yao, J.; Rho, J.; Yin, X.; Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics 2012, 6, 450–454. [Google Scholar] [CrossRef]
- Wu, C.; Salandrino, A.; Ni, X.; Zhang, X. Electrodynamical Light Trapping Using Whispering-Gallery Resonances in Hyperbolic Cavities. Phys. Rev. X 2014, 4, 021015. [Google Scholar] [CrossRef]
- He, Y.; Deng, H.; Jiao, X.; He, S.; Gao, J.; Yang, X. Infrared perfect absorber based on nanowire metamaterial cavities. Opt. Lett. 2013, 38, 1179–1181. [Google Scholar] [CrossRef]
- Ishii, S.; Inoue, S.; Otomo, A. Scattering and absorption from strongly anisotropic nanoparticles. Opt. Express 2013, 21, 23181–23187. [Google Scholar] [CrossRef]
- Smaali, R.; Omeis, F.; Moreau, A.; Centeno, E.; Taliercio, T. Miniaturizing optical antennas using hyperbolic metamaterial wires. Phys. Rev. B 2017, 95, 155306. [Google Scholar] [CrossRef]
- Guclu, C.; Luk, T.S.; Wang, G.T.; Capolino, F. Radiative emission enhancement using nano-antennas made of hyperbolic metamaterial resonators. Appl. Phys. Lett. 2014, 105, 123101. [Google Scholar] [CrossRef]
- Wang, P.; Krasavin, A.V.; Liu, L.; Jiang, Y.; Li, Z.; Guo, X.; Tong, L.; Zayats, A.V. Molecular Plasmonics with Metamaterials. Chem. Rev. 2022, 122, 15031–15081. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Iorsh, I. Interaction of light with a hyperbolic cavity in the strong-coupling regime with Fano resonance. In Proceedings of the 2015 Days Diffraction, St. Petersburg, Russia, 25–29 May 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Palermo, G.; Sreekanth, K.V.; Maccaferri, N.; Lio, G.E.; Nicoletta, G.; De Angelis, F.; Hinczewski, M.; Strangi, G. Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics 2021, 10, 295–314. [Google Scholar] [CrossRef]
- Maccaferri, N.; Zhao, Y.; Isoniemi, T.; Iarossi, M.; Parracino, A.; Strangi, G.; De Angelis, F. Hyperbolic Meta-Antennas Enable Full Control of Scattering and Absorption of Light. Nano Lett. 2019, 19, 1851–1859. [Google Scholar] [CrossRef]
- Slobozhanyuk, A.P.; Ginzburg, P.; Powell, D.A.; Iorsh, I.; Shalin, A.S.; Segovia, P.; Krasavin, A.V.; Wurtz, G.A.; Podolskiy, V.A.; Belov, P.A.; et al. Purcell effect in hyperbolic metamaterial resonators. Phys. Rev. B 2015, 92, 195127. [Google Scholar] [CrossRef]
- Wan, M.; Gu, P.; Liu, W.; Chen, Z.; Wang, Z. Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Appl. Phys. Lett. 2017, 110, 031103. [Google Scholar] [CrossRef]
- Feng, K.; Harden, G.; Sivco, D.L.; Hoffman, A.J. Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators. ACS Photonics 2017, 4, 1621–1626. [Google Scholar] [CrossRef]
- Wei, D.; Harris, C.; Bomberger, C.C.; Zhang, J.; Zide, J.; Law, S. Single-material semiconductor hyperbolic metamaterials. Opt. Express 2016, 24, 8735–8745. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Vurgaftman, I.; Tischler, J.G.; Glembocki, O.J.; Owrutsky, J.C.; Reinecke, T.L. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotechnol. 2016, 11, 9–15. [Google Scholar] [CrossRef]
- Su, C.; Janzen, E.; He, M.; Li, C.; Zettl, A.; Caldwell, J.D.; Edgar, J.H.; Aharonovich, I. Fundamentals and emerging optical applications of hexagonal boron nitride: A tutorial. Adv. Opt. Photonics 2024, 16, 229–346. [Google Scholar] [CrossRef]
- Gupta, H.; Venturi, G.; Contino, T.; Janzen, E.; Edgar, H.; de Angelis, F.; Toma, A.; Ambrosio, A.; Tamagnone, M. Bound states in the continuum and long-range coupling of polaritons in hexagonal boron nitride nanoresonators. arXiv 2023, arXiv:2309.12281. [Google Scholar] [CrossRef]
- Ling, H.; Nourbakhsh, M.; Whiteside, V.R.; Tischler, J.G.; Davoyan, A.R. Near-Unity Light–Matter Interaction in Mid-Infrared van der Waals Metasurfaces. Nano Lett. 2024, 24, 3315–3322. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Yu, W.; Zhang, T.; Mu, H.; Si, G.; Cui, Z.; Lin, S.; Zheng, B.; Qiu, C.-W.; et al. Monolithically Structured van der Waals Materials for Volume-Polariton Refraction and Focusing. ACS Nano 2024, 18, 17065–17074. [Google Scholar] [CrossRef]
- Dai, S.; Fei, Z.; Ma, Q.; Rodin, A.S.; Wagner, M.; McLeod, A.S.; Liu, M.K.; Gannett, W.; Regan, W.; Watanabe, K.; et al. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride. Science 2014, 343, 1125–1129. [Google Scholar] [CrossRef]
- Li, P.; Dolado, I.; Alfaro-Mozaz, F.J.; Nikitin, A.Y.; Casanova, F.; Hueso, L.E.; Vélez, S.; Hillenbrand, R. Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. Nano Lett. 2017, 17, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ma, Q.; Liu, M.K.; Andersen, T.; Fei, Z.; Goldflam, M.D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 2015, 10, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Alonso-Gonzalez, P.; Li, S.; Nikitin, A.Y.; Yuan, J.; Martin-Sanchez, J.; Taboada-Gutierrez, J.; Amenabar, I.; Li, P.; Velez, S.; et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Chen, J.; Wang, Y.; Wang, X.; Chen, X.; Liu, P.; Xu, J.; Xie, W.; Chen, H.; Deng, S.; et al. Highly Confined and Tunable Hyperbolic Phonon Polaritons in van der Waals Semiconducting Transition Metal Oxides. Adv. Mater. 2018, 30, 1705318. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, N.; Oscurato, S.L.; Tamagnone, M.; Sun, F.; Jiang, Y.; Ke, Y.; Chen, J.; Huang, W.; Wilson, W.L.; et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 2019, 5, eaav8690. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.D.; Glembocki, O.J.; Francescato, Y.; Sharac, N.; Giannini, V.; Bezares, F.J.; Long, J.P.; Owrutsky, J.C.; Vurgaftman, I.; Tischler, J.G.; et al. Low-Loss, Extreme Subdiffraction Photon Confinement via Silicon Carbide Localized Surface Phonon Polariton Resonators. Nano Lett. 2013, 13, 3690–3697. [Google Scholar] [CrossRef]
- Ellis, C.T.; Tischler, J.G.; Glembocki, O.J.; Bezares, F.J.; Giles, A.J.; Kasica, R.; Shirey, L.; Owrutsky, J.C.; Chigrin, D.N.; Caldwell, J.D. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures. Sci. Rep. 2016, 6, 32959. [Google Scholar] [CrossRef]
- Feng, K.; Streyer, W.; Islam, S.M.; Verma, J.; Jena, D.; Wasserman, D.; Hoffman, A.J. Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 2015, 107, 081108. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T.L.; Maier, S.A.; Glembocki, O.J. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 2015, 4, 44–68. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, R.; He, J.; Qi, L.; Zhang, Y.; Sun, T.; Zhu, X.; Liu, W.; Ma, W.; Shen, W.; et al. Visible to mid-infrared giant in-plane optical anisotropy in ternary van der Waals crystals. Nat. Commun. 2023, 14, 6739. [Google Scholar] [CrossRef]
- Boltasseva, A.; Shalaev, V.M. Transdimensional Photonics. ACS Photonics 2019, 6, 1–3. [Google Scholar] [CrossRef]
- Dudek, M.; Kowerdziej, R.; Pianelli, A.; Parka, J. Graphene-based tunable hyperbolic microcavity. Sci. Rep. 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Pianelli, A.; Caligiuri, V.; Dudek, M.; Kowerdziej, R.; Chodorow, U.; Sielezin, K.; De Luca, A.; Caputo, R.; Parka, K. Active control of dielectric singularities in indium-tin-oxides hyperbolic metamaterials. Sci. Rep. 2022, 12, 16961. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Litchinitser, N.M.; Zhou, J. Indefinite by Nature: From Ultraviolet to Terahertz. ACS Photonics 2014, 1, 293–303. [Google Scholar] [CrossRef]
- Narimanov, E.E.; Kildishev, A.V. Naturally hyperbolic. Nat. Photonics 2015, 9, 214–216. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Z.M. Resonance perfect absorption by exciting hyperbolic phonon polaritons in 1D hBN gratings. Opt. Express 2017, 25, 7791–7796. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, A.Y.; Yoxall, E.; Schnell, M.; Vélez, S.; Dolado, I.; Alonso-Gonzalez, P.; Casanova, F.; Hueso, L.E.; Hillenbrand, R. Nanofocusing of Hyperbolic Phonon Polaritons in a Tapered Boron Nitride Slab. ACS Photonics 2016, 3, 924–929. [Google Scholar] [CrossRef]
- Li, P.; Lewin, M.; Kretinin, A.V.; Caldwell, J.D.; Novoselov, K.S.; Taniguchi, T.; Watanabe, K.; Gaussmann, F.; Taubner, T. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 2015, 6, 7507. [Google Scholar] [CrossRef]
- Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A.S.; Fei, Z.; Liu, M.K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 2015, 6, 6963. [Google Scholar] [CrossRef]
- Ambrosio, A.; Tamagnone, M.; Chaudhary, K.; Jauregui, L.A.; Kim, P.; Wilson, W.L.; Capasso, F. Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light Sci. Appl. 2018, 7, 27. [Google Scholar] [CrossRef]
- Maier, M.; Nemilentsau, A.; Low, T.; Luskin, M. Ultracompact Amplitude Modulator by Coupling Hyperbolic Polaritons over a Graphene-Covered Gap. ACS Photonics 2018, 5, 544–551. [Google Scholar] [CrossRef]
- Dai, S.; Quan, J.; Hu, G.; Qiu, C.-W.; Tao, T.H.; Li, X.; Alu, A. Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. Nano Lett. 2019, 19, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Mozaz, F.J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L.E.; Li, P.; Nikitin, A.Y.; et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 2017, 8, 15624. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.D.; Kretinin, A.V.; Chen, Y.; Giannini, V.; Fogler, M.M.; Francescato, Y.; Ellis, C.T.; Tischler, J.G.; Woods, C.R.; Giles, A.J.; et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 2014, 5, 5221. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.V.; Davanco, M.; Sun, Z.; Kretinin, A.; Chen, Y.; Matson, J.R.; Vurgaftman, I.; Sharac, N.; Giles, A.J.; Fogler, M.M.; et al. Nanoscale Mapping and Spectroscopy of Nonradiative Hyperbolic Modes in Hexagonal Boron Nitride Nanostructures. Nano Lett. 2018, 18, 1628–1636. [Google Scholar] [CrossRef] [PubMed]
- Tamagnone, M.; Ambrosio, A.; Chaudhary, K.; Jauregui, L.A.; Kim, P.; Wilson, W.L.; Capasso, F. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 2018, 4, eaat7189. [Google Scholar] [CrossRef]
- Giles, A.J.; Dai, S.; Glembocki, O.J.; Kretinin, A.V.; Sun, Z.; Ellis, C.T.; Tischler, J.G.; Taniguchi, T.; Watanabe, K.; Fogler, M.M.; et al. Imaging of Anomalous Internal Reflections of Hyperbolic Phonon-Polaritons in Hexagonal Boron Nitride. Nano Lett. 2016, 16, 3858–3865. [Google Scholar] [CrossRef]
- Babicheva, V.E. Directional scattering by the hyperbolic-medium antennas and silicon particles. MRS Adv. 2018, 3, 1913–1917. [Google Scholar] [CrossRef]
- Sun, Z.; Gutierrez-Rubio, Á.; Basov, D.N.; Fogler, M.M. Hamiltonian Optics of HyperbolicPolaritons in Nanogranules. Nano Lett. 2015, 15, 4455–4460. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, L.; Zeng, Q.; Cheng, L.; Xu, Y. Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun. 2007, 141, 262–266. [Google Scholar] [CrossRef]
- Islam, M.S.; Babicheva, V.E. Lattice Mie resonances and emissivity enhancement in mid-infrared iron pyrite metasurfaces. Opt. Express 2023, 31, 40380–40392. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Inoue, S.; Otomo, A. Electric and magnetic resonances in strongly anisotropic particles. J. Opt. Soc. Am. B 2014, 31, 218–222. [Google Scholar] [CrossRef]
- Yang, Y.; Miroshnichenko, A.E.; Kostinski, S.V.; Odit, M.; Kapitanova, P.; Qiu, M.; Kivshar, Y.S. Multimode directionality in all-dielectric metasurfaces. Phys. Rev. B 2017, 95, 165426. [Google Scholar] [CrossRef]
- Kerker, M.; Wang, D.; Giles, C. Electromagnetic Scattering by Magnetic Spheres. J. Opt. Soc. Am. 1983, 73, 765–767. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Ye, M.J.; Yu, M.W.; Yang, J.H.; Su, K.L.; Yang, C.C.; Lin, C.Y.; Babicheva, V.E.; Timofeev, I.V.; Chen, K.-P. Germanium metasurfaces with lattice Kerker effect in near-infrared photodetectors. ACS Nano 2022, 16, 5994–6001. [Google Scholar] [CrossRef]
- Fu, Y.H.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Yu, Y.F.; Luk’yanchuk, B. Directional Visible Light Scattering by Silicon Nanoparticles. Nat. Commun. 2013, 4, 1527. [Google Scholar] [CrossRef]
- Person, S.; Jain, M.; Lapin, Z.; Sáenz, J.J.; Wicks, G.; Novotny, L. Demonstration of Zero Optical Backscattering from Single Nanoparticles. Nano Lett. 2013, 13, 1806–1809. [Google Scholar] [CrossRef]
- Pors, A.; Andersen, S.K.H.; Bozhevolnyi, S.I. Unidirectional scattering by nanoparticles near substrates: Generalized Kerker conditions. Optics Express 2015, 23, 28808–28828. [Google Scholar] [CrossRef]
- Alaee, R.; Filter, R.; Lehr, D.; Lederer, F.; Rockstuhl, C. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett. 2015, 40, 2645–2648. [Google Scholar] [CrossRef]
- Babicheva, V.E. Lattice Kerker effect in the array of hexagonal boron nitride antennas. MRS Adv. 2018, 3, 2783–2788. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Evlyukhin, A.B. Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices. MRS Commun. 2018, 8, 712–717. [Google Scholar] [CrossRef]
- Auguié, B.; Barnes, W.L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 2008, 101, 143902. [Google Scholar] [CrossRef] [PubMed]
- Evlyukhin, A.B.; Reinhardt, C.; Zywietz, U.; Chichkov, B.N. Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B 2012, 85, 245411. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Babicheva, V.E.; Uskov, A.V.; Protsenko, I.E.; Lavrinenko, A.V. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells. Plasmonics 2014, 9, 283–289. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Babicheva, V.E.; Uskov, A.V.; Protsenko, I.E.; Lavrinenko, A.V. Electron Photoemission in Plasmonc Nanoparticle Arrays: Analysis of Collective Resonances and Embedding Effects. Appl. Phys. A 2014, 116, 929–940. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Reinhardt, C.; Seidel, A.; Luk’yanchuk, B.S.; Chichkov, B.N. Optical Response Features of Si-Nanoparticle Arrays. Phys. Rev. B 2010, 82, 045404. [Google Scholar] [CrossRef]
- Babicheva, V.E. Lattice effect in Mie-resonant dielectric nanoparticle array under the oblique light incidence. MRS Commun. 2018, 8, 1455–1462. [Google Scholar] [CrossRef]
- Han, A.; Moloney, J.V.; Babicheva, V.E. Applicability of multipole decomposition to plasmonic- and dielectric-lattice resonances. J. Chem. Phys. 2022, 156, 114104. [Google Scholar] [CrossRef]
- Ruan, Z.; Fan, S. Superscattering of Light from Subwavelength Nanostructures. Phys. Rev. Lett. 2010, 105, 013901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babicheva, V.E. Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement. Nanomaterials 2024, 14, 1539. https://doi.org/10.3390/nano14181539
Babicheva VE. Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement. Nanomaterials. 2024; 14(18):1539. https://doi.org/10.3390/nano14181539
Chicago/Turabian StyleBabicheva, Viktoriia E. 2024. "Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement" Nanomaterials 14, no. 18: 1539. https://doi.org/10.3390/nano14181539
APA StyleBabicheva, V. E. (2024). Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement. Nanomaterials, 14(18), 1539. https://doi.org/10.3390/nano14181539