Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. GPE Synthesis
2.3. FND Synthesis
2.4. Amination of Glycidol-Coated FND
2.5. Creation of Aminated-Propargyl FND
2.6. Amine Assay
2.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.8. Creation of PEGylated GR1 Antibody
2.9. Bioconjugation Reactions
2.10. Modified ELISA
2.11. Kinetic HRP Procedure
2.12. Cell Lines
2.13. Isolation of MDSC from Tumor-Bearing Mice
2.14. In Vitro FND Treatment Assays
2.15. In Vivo Localization of FND in a Murine Breast Cancer Model
2.16. In Vivo FND Uptake by MDSC during PD-L1 Blockade
2.17. Flow Cytometry
2.18. Statistical Analysis
3. Results
3.1. Synthesis of FND Labeled with Two Distinct Antibodies
3.2. ELISA of FND Dual Conjugation
3.3. In Vitro FND Uptake Assays
3.4. In Vivo Localization of FND in Tumor-Bearing Mice
3.5. Specificity of Dual-Antibody Conjugated to MDSC in the Tumor Microenvironment
3.6. FND Uptake by MDSC during the Course of PD-L1 Blockade
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Stiff, A.; Trikha, P.; Wesolowski, R.; Kendra, K.; Hsu, V.; Uppati, S.; McMichael, E.; Duggan, M.; Campbell, A.; Keller, K.; et al. Myeloid-Derived Suppressor Cells Express Bruton’s Tyrosine Kinase and Can Be Depleted in Tumor-Bearing Hosts by Ibrutinib Treatment. Cancer Res. 2016, 76, 2125–2136. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.; Zhang, C.; Herrmann, A.; Du, Y.; Figlin, R.; Yu, H. Sunitinib Inhibition of Stat3 Induces Renal Cell Carcinoma Tumor Cell Apoptosis and Reduces Immunosuppressive Cells. Cancer Res. 2009, 69, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Hoechst, B.; Ormandy, L.A.; Ballmaier, M.; Lehner, F.; Krüger, C.; Manns, M.P.; Greten, T.F.; Korangy, F. A New Population of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma Patients Induces CD4+CD25+Foxp3+ T Cells. Gastroenterology 2008, 135, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.K.; Bosch, J.J.; Thompson, J.A.; Ksander, B.R.; Edelman, M.J.; Ostrand-Rosenberg, S. Lung Cancer Patients’ CD4+ T Cells Are Activated in Vitro by MHC II Cell-Based Vaccines despite the Presence of Myeloid-Derived Suppressor Cells. Cancer Immunol. Immunother. 2008, 57, 1493–1504. [Google Scholar] [CrossRef]
- Ishida, S.; Huang, E.; Zuzan, H.; Spang, R.; Leone, G.; West, M.; Nevins, J.R. Role for E2F in Control of Both DNA Replication and Mitotic Functions as Revealed from DNA Microarray Analysis. Mol. Cell. Biol. 2001, 21, 4684–4699. [Google Scholar] [CrossRef]
- Mundy-Bosse, B.L.; Lesinski, G.B.; Jaime-Ramirez, A.C.; Benninger, K.; Khan, M.; Kuppusamy, P.; Guenterberg, K.; Kondadasula, S.V.; Chaudhury, A.R.; la Perle, K.M.; et al. Myeloid-Derived Suppressor Cell Inhibition of the IFN Response in Tumor-Bearing Mice. Cancer Res. 2011, 71, 5101–5110. [Google Scholar] [CrossRef]
- Montero, A.J.; Diaz-Montero, C.M.; Deutsch, Y.E.; Hurley, J.; Koniaris, L.G.; Rumboldt, T.; Yasir, S.; Jorda, M.; Garret-Mayer, E.; Avisar, E.; et al. Phase 2 Study of Neoadjuvant Treatment with NOV-002 in Combination with Doxorubicin and Cyclophosphamide Followed by Docetaxel in Patients with HER-2 Negative Clinical Stage II–IIIc Breast Cancer. Breast Cancer Res. Treat. 2012, 132, 215–223. [Google Scholar] [CrossRef]
- Vuk-Pavlović, S.; Bulur, P.A.; Lin, Y.; Qin, R.; Szumlanski, C.L.; Zhao, X.; Dietz, A.B. Immunosuppressive CD14 + HLA-DR low/− Monocytes in Prostate Cancer. Prostate 2010, 70, 443–455. [Google Scholar] [CrossRef]
- Jordan, K.R.; Amaria, R.N.; Ramirez, O.; Callihan, E.B.; Gao, D.; Borakove, M.; Manthey, E.; Borges, V.F.; McCarter, M.D. Myeloid-Derived Suppressor Cells Are Associated with Disease Progression and Decreased Overall Survival in Advanced-Stage Melanoma Patients. Cancer Immunol. Immunother. 2013, 62, 1711–1722. [Google Scholar] [CrossRef]
- Sawanobori, Y.; Ueha, S.; Kurachi, M.; Shimaoka, T.; Talmadge, J.E.; Abe, J.; Shono, Y.; Kitabatake, M.; Kakimi, K.; Mukaida, N.; et al. Chemokine-Mediated Rapid Turnover of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Blood 2008, 111, 5457–5466. [Google Scholar] [CrossRef] [PubMed]
- Bronte, V.; Brandau, S.; Chen, S.-H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-Rosenberg, S.; et al. Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nat. Commun. 2016, 7, 12150. [Google Scholar] [CrossRef] [PubMed]
- Condamine, T.; Gabrilovich, D.I. Molecular Mechanisms Regulating Myeloid-Derived Suppressor Cell Differentiation and Function. Trends Immunol. 2011, 32, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Stiff, A.; Trikha, P.; Mundy-Bosse, B.; McMichael, E.; Mace, T.A.; Benner, B.; Kendra, K.; Campbell, A.; Gautam, S.; Abood, D.; et al. Nitric Oxide Production by Myeloid-Derived Suppressor Cells Plays a Role in Impairing Fc Receptor–Mediated Natural Killer Cell Function. Clin. Cancer Res. 2018, 24, 1891–1904. [Google Scholar] [CrossRef] [PubMed]
- SERAFINI, P.; BORRELLO, I.; BRONTE, V. Myeloid Suppressor Cells in Cancer: Recruitment, Phenotype, Properties, and Mechanisms of Immune Suppression. Semin. Cancer Biol. 2006, 16, 53–65. [Google Scholar] [CrossRef]
- Youn, J.-I.; Nagaraj, S.; Collazo, M.; Gabrilovich, D.I. Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. J. Immunol. 2008, 181, 5791–5802. [Google Scholar] [CrossRef]
- Boudou, J.-P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High Yield Fabrication of Fluorescent Nanodiamonds. Nanotechnology 2009, 20, 235602. [Google Scholar]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C.L. The Nitrogen-Vacancy Colour Centre in Diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef]
- Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C. Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605. [Google Scholar] [CrossRef]
- Zaitsev, A. Optical Properties of a Diamond. In A Data Handbook; Springer: Berlin, Germany, 2001. [Google Scholar]
- Vaijayanthimala, V.; Cheng, P.-Y.; Yeh, S.-H.; Liu, K.-K.; Hsiao, C.-H.; Chao, J.-I.; Chang, H.-C. The Long-Term Stability and Biocompatibility of Fluorescent Nanodiamond as an in Vivo Contrast Agent. Biomaterials 2012, 33, 7794–7802. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Kelly, L.P.; Campbell, A.R.; Rampersaud, I.V.; Bumb, A.; Wang, M.S.; Butchar, J.P.; Tridandapani, S.; Yu, L.; Rampersaud, A.A.; Carson, W.E. Fluorescent Nanodiamonds Engage Innate Immune Effector Cells: A Potential Vehicle for Targeted Anti-Tumor Immunotherapy. Nanomedicine 2017, 13, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Gerstenhaber, J.A.; Marcinkiewicz, C.; Barone, F.C.; Sternberg, M.; D’Andrea, M.R.; Lelkes, P.I.; Feuerstein, G.Z. Biocompatibility Studies of Fluorescent Diamond Particles-(NV)~800nm (Part V): In Vitro Kinetics and in Vivo Localization in Rat Liver Following Long-Term Exposure. Int. J. Nanomed. 2019, 14, 6451–6464. [Google Scholar] [CrossRef]
- Barone, F.C.; Marcinkiewicz, C.; Li, J.; Yi, F.; Sternberg, M.; Lelkes, P.I.; Rosenbaum, D.P.; Gerstenhaber, J.A.; Feuerstein, G.Z. Long-Term Biocompatibility of Fluorescent Diamonds-(NV)-Z~800 Nm in Rats: Survival, Morbidity, Histopathology, and Particle Distribution and Excretion Studies (Part IV). Int. J. Nanomed. 2019, 14, 1163–1175. [Google Scholar] [CrossRef]
- Meinhardt, T.; Lang, D.; Dill, H.; Krueger, A. Pushing the Functionality of Diamond Nanoparticles to New Horizons: Orthogonally Functionalized Nanodiamond Using Click Chemistry. Adv. Funct. Mater. 2011, 21, 494–500. [Google Scholar] [CrossRef]
- Krueger, A.; Lang, D. Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22, 890–906. [Google Scholar] [CrossRef]
- Zhao, L.; Nakae, Y.; Qin, H.; Ito, T.; Kimura, T.; Kojima, H.; Chan, L.; Komatsu, N. Polyglycerol-Functionalized Nanodiamond as a Platform for Gene Delivery: Derivatization, Characterization, and Hybridization with DNA. Beilstein J. Org. Chem. 2014, 10, 707–713. [Google Scholar] [CrossRef]
- Boudou, J.-P.; David, M.-O.; Joshi, V.; Eidi, H.; Curmi, P.A. Hyperbranched Polyglycerol Modified Fluorescent Nanodiamond for Biomedical Research. Diam. Relat. Mater. 2013, 38, 131–138. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.-H.; Akasaka, T.; Abe, S.; Komatsu, N.; Watari, F.; Chen, X. Polyglycerol-Coated Nanodiamond as a Macrophage-Evading Platform for Selective Drug Delivery in Cancer Cells. Biomaterials 2014, 35, 5393–5406. [Google Scholar] [CrossRef]
- Neburkova, J.; Vavra, J.; Cigler, P. Coating Nanodiamonds with Biocompatible Shells for Applications in Biology and Medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 43–53. [Google Scholar] [CrossRef]
- Wang, D.; Tong, Y.; Li, Y.; Tian, Z.; Cao, R.; Yang, B. PEGylated Nanodiamond for Chemotherapeutic Drug Delivery. Diam. Relat. Mater. 2013, 36, 26–34. [Google Scholar] [CrossRef]
- Zhao, L.; Takimoto, T.; Ito, M.; Kitagawa, N.; Kimura, T.; Komatsu, N. Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol Grafting. Angew. Chem. Int. Ed. 2011, 50, 1388–1392. [Google Scholar] [CrossRef]
- Faklaris, O.; Joshi, V.; Irinopoulou, T.; Tauc, P.; Sennour, M.; Girard, H.; Gesset, C.; Arnault, J.-C.; Thorel, A.; Boudou, J.-P.; et al. Photoluminescent Diamond Nanoparticles for Cell Labeling: Study of the Uptake Mechanism in Mammalian Cells. ACS Nano 2009, 3, 3955–3962. [Google Scholar] [CrossRef] [PubMed]
- Faklaris, O.; Garrot, D.; Joshi, V.; Druon, F.; Boudou, J.-P.; Sauvage, T.; Georges, P.; Curmi, P.A.; Treussart, F. Detection of Single Photoluminescent Diamond Nanoparticles in Cells and Study of the Internalization Pathway. Small 2008, 4, 2236–2239. [Google Scholar] [CrossRef] [PubMed]
- Tarasova, O.A.; Nedolya, N.A.; Trofimov, B.A. Synthesis of Glycidyl Propargyl Ether. Russ. J. Org. Chem. 2017, 53, 1740–1741. [Google Scholar]
- Petit, T.; Puskar, L. FTIR Spectroscopy of Nanodiamonds: Methods and Interpretation. Diam. Relat. Mater. 2018, 89, 52–66. [Google Scholar]
- Suarez-Kelly, L.P.; Sun, S.H.; Ren, C.; Rampersaud, I.V.; Albertson, D.; Duggan, M.C.; Noel, T.C.; Courtney, N.; Buteyn, N.J.; Moritz, C.; et al. Antibody Conjugation of Fluorescent Nanodiamonds for Targeted Innate Immune Cell Activation. ACS Appl. Nano Mater. 2021, 4, 3122–3139. [Google Scholar] [CrossRef]
- Carlsson, J.; Drevin, H.; Axén, R. Protein Thiolation and Reversible Protein-Protein Conjugation. N-Succinimidyl 3-(2-Pyridyldithio)Propionate, a New Heterobifunctional Reagent. Biochem. J. 1978, 173, 723–737. [Google Scholar]
- Hermanson, G.T. Bioconjugate Techniques; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Apolloni, E.; Bronte, V.; Mazzoni, A.; Serafini, P.; Cabrelle, A.; Segal, D.M.; Young, H.A.; Zanovello, P. Immortalized Myeloid Suppressor Cells Trigger Apoptosis in Antigen-Activated T Lymphocytes. J. Immunol. 2000, 165, 6723–6730. [Google Scholar]
- Carlson, E.J.; Savardekar, H.; Hu, X.; Lapurga, G.; Johnson, C.; Sun, S.H.; Carson, W.E.; Peterson, B.R. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol. Transl. Sci. 2023, 6, 738–747. [Google Scholar]
- Sun, S.H.; Angell, C.D.; Savardekar, H.; Sundi, D.; Abood, D.; Benner, B.; DiVincenzo, M.J.; Duggan, M.; Choueiry, F.; Mace, T. BTK Inhibition Potentiates Anti-PD-L1 Treatment in Murine Melanoma: Potential Role for MDSC Modulation in Immunotherapy. Cancer Immunol. Immunother. 2023, 72, 3461–3474. [Google Scholar] [PubMed]
- Pham, M.D.; Epperla, C.P.; Hsieh, C.-L.; Chang, W.; Chang, H.-C. Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. Anal. Chem. 2017, 89, 6527–6534. [Google Scholar] [CrossRef] [PubMed]
- Torelli, M.D.; Rickard, A.G.; Backer, M.V.; Filonov, D.S.; Nunn, N.A.; Kinev, A.V.; Backer, J.M.; Palmer, G.M.; Shenderova, O.A. Targeting Fluorescent Nanodiamonds to Vascular Endothelial Growth Factor Receptors in Tumor. Bioconjugate Chem. 2019, 30, 604–613. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Fang, C.-Y.; Chang, C.-C.; Chen, C.-S.; Chen, Y.-Y.; Chang, H.-C. Receptor-Mediated Cellular Uptake of Folate-Conjugated Fluorescent Nanodiamonds: A Combined Ensemble and Single-Particle Study. Small 2009, 5, 2716–2721. [Google Scholar] [CrossRef]
- Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.; Cigler, P. Designing the Nanobiointerface of Fluorescent Nanodiamonds: Highly Selective Targeting of Glioma Cancer Cells. Nanoscale 2015, 7, 415–420. [Google Scholar] [CrossRef]
- Suarez-Kelly, L.P.; Rampersaud, I.V.; Moritz, C.E.; Campbell, A.R.; Hu, Z.; Alkahtani, M.H.; Alghannam, F.S.; Hemmer, P.; Carson, W.E.; Rampersaud, A.A. Fluorescent Nanodiamonds and Their Use in Biomedical Research. In Proceedings SPIE: Advance in Photonics of Quantum Computing, Memory, and Communication IX; Hasan, Z.U., Hemmer, P.R., Lee, H., Migdall, A.L., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9762, p. 976205. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angell, C.D.; Lapurga, G.; Sun, S.H.; Johnson, C.; Savardekar, H.; Rampersaud, I.V.; Fletcher, C.; Albertson, D.; Ren, C.; Suarez-Kelly, L.P.; et al. Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate. Nanomaterials 2024, 14, 1509. https://doi.org/10.3390/nano14181509
Angell CD, Lapurga G, Sun SH, Johnson C, Savardekar H, Rampersaud IV, Fletcher C, Albertson D, Ren C, Suarez-Kelly LP, et al. Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate. Nanomaterials. 2024; 14(18):1509. https://doi.org/10.3390/nano14181509
Chicago/Turabian StyleAngell, Colin D., Gabriella Lapurga, Steven H. Sun, Courtney Johnson, Himanshu Savardekar, Isaac V. Rampersaud, Charles Fletcher, David Albertson, Casey Ren, Lorena P. Suarez-Kelly, and et al. 2024. "Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate" Nanomaterials 14, no. 18: 1509. https://doi.org/10.3390/nano14181509
APA StyleAngell, C. D., Lapurga, G., Sun, S. H., Johnson, C., Savardekar, H., Rampersaud, I. V., Fletcher, C., Albertson, D., Ren, C., Suarez-Kelly, L. P., Rampersaud, A. A., & Carson, W. E., III. (2024). Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate. Nanomaterials, 14(18), 1509. https://doi.org/10.3390/nano14181509