Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Preparation of Caragana Fiber
2.3. Preparation of Chitosan/Caragana Fiber Composite Materials
2.4. Resilience and Compression Cycle Test
2.5. Stress–Strain Test
2.6. Dye Adsorption Experiment
2.7. Test of Adsorption Efficiency of Adsorbent
2.8. Characterizations
3. Results and Discussion
3.1. Structural and Morphology Analysis of Monolith
3.2. Mechanical Property
3.3. Adsorption Properties
3.4. Cost–Benefit Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbasi, A.; Khatoon, F.; Ikram, S. A review on remediation of dye adulterated system by ecologically innocuous “biopolymers/natural gums-based composites”. Int. J. Biol. Macromol. 2023, 231, 123240. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Wang, W.B. Multiffunctional materials with controllable super-wettability for oil-water separation and removal of pollutants: Design, emerging applications and challenges. Carbon Neutralization 2023, 2, 378–412. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.J.; Wang, L. MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Sep. Purif. Technol. 2023, 322, 124301. [Google Scholar] [CrossRef]
- Mustafa, F.H.; ElRab, E.K.G.; Kamel, R.M.; Elshaarawy, R.F. Cost-effective removal of toxic methylene blue dye from textile effluents by new integrated crosslinked chitosan/aspartic acid hydrogels. Int. J. Biol. Macromol. 2023, 248, 125986. [Google Scholar] [CrossRef]
- Bagheri, O.; Esmkhani, M.; Javanshir, S.; Aghabarari, B. Preparation of agar functionalized graphene oxide-immobilized copper ferrite aerogel for dye degradation via dark-Fenton oxidative process. Int. J. Biol. Macromol. 2023, 253, 127432. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, G.; Lou, T.; Wang, X. High performance, cost-effective and ecofriendly flocculant synthesized by grafting carboxymethyl cellulose and alginate with itaconic acid. Int. J. Biol. Macromol. 2023, 231, 123305. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, J.; Lu, T.; Tang, G.; Wu, S.; Ma, W.; Huang, C. Robust, functionalized reduced graphene-based nanofibrous membrane for contaminated water purification. Chem. Eng. J. 2021, 404, 126347. [Google Scholar] [CrossRef]
- Sharma, U.; Pandey, R.; Basu, S.; Saravanan, P. ZIF-67 blended PVDF membrane for improved Congo red removal and antifouling properties: A correlation establishment between morphological features and ultra-filtration parameters. Chemosphere 2023, 320, 138075. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, B.; Amesimeku, J.; Frimpong, C.; Howard, E.K.; Feng, Q.; Xu, Z.Z. Photocatalytic degradation of dyes by novel electrospun nanofibers: A review. Chemosphere 2023, 313, 137654. [Google Scholar] [CrossRef]
- Gaur, J.; Vikrant, K.; Kim, K.-H.; Kumar, S.; Pal, M.; Badru, R.; Masand, S.; Momoh, J. Photocatalytic degradation of Congo red dye using zinc oxide nanoparticles prepared using Carica papaya leaf extract. Mater. Today Sustain. 2023, 22, 100339. [Google Scholar] [CrossRef]
- He, Q.D.; Qi, J.; Liu, X.Y.; Zhang, H.; Wang, Y.W.; Wang, W.B.; Guo, F. Carbon-in-silicate nanohybrid constructed by in situ confined conversion of organics in rectorite for complete removal of dye from water. Nanomaterials 2023, 13, 2627. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, Y.; Lu, Y.H.; Liang, S.H.; Zhang, Y.F.; Zhang, J.; Shi, R.H.; Yin, W. Fabrication of a corn stalk derived cellulose-based bio-adsorbent to remove Congo red from wastewater: Investigation on its ultra-high adsorption performance and mechanism. Int. J. Biol. Macromol. 2023, 241, 124545. [Google Scholar] [CrossRef]
- Kuang, J.; Cai, T.M.; Dai, J.B.; Yao, L.H.; Liu, F.F.; Liu, Y.; Shu, J.C.; Fan, J.P.; Peng, H.L. High strength chitin/chitosan-based aerogel with 3D hierarchically macro-meso-microporous structure for high-efficiency adsorption of Cu(II) ions and Congo red. Int. J. Biol. Macromol. 2023, 230, 123238. [Google Scholar] [CrossRef]
- Li, A.; Lin, R.; Lin, C.; He, B.Y.; Zheng, T.T.; Lu, L.B.; Cao, Y. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr. Polym. 2016, 148, 272–280. [Google Scholar] [CrossRef]
- Rehman, M.U.; Taj, M.B.; Carabineiro, S.A.C. Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. Chemosphere 2023, 338, 139477. [Google Scholar] [CrossRef]
- Ruhl, A.S.; Zietzschmann, F.; Hilbrandt, I.; Meinel, F.; Altmann, J.; Sperlich, A.; Jekel, M. Targeted testing of activated carbons for advanced wastewater treatment. Chem. Eng. J. 2014, 257, 184–190. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Inamuddin. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environ. Chem. Lett. 2020, 18, 605–629. [Google Scholar] [CrossRef]
- Hong, M.; Li, D.; Wang, B.; Zhang, J.Y.; Peng, B.; Xu, X.L.; Wang, Y.; Bao, C.Y.; Chen, J.; Zhang, Q. Cellulose-derived polyols as high-capacity adsorbents for rapid boron and organic pollutants removal from water. J. Hazard. Mater. 2021, 419, 126503. [Google Scholar] [CrossRef]
- Sriram, G.; Kigga, M.; Uthappa, U.; Rego, R.M.; Thendral, V.; Kumeria, T.; Jung, H.-Y.; Kurkuri, M.D. Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv. Colloid Interface Sci. 2020, 282, 102198. [Google Scholar] [CrossRef]
- Wang, W.B.; Tian, G.Y.; Zhang, Z.F.; Wang, A.Q. A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of Methylene blue and Cu(II) ions. Chem. Eng. J. 2015, 265, 228–238. [Google Scholar] [CrossRef]
- Zhou, G.H.; Zhang, H.; Bai, Z.J.; Jiang, J.Y.; Wang, Y.; Quan, F.Y. Efficient and rapid adsorption of methylene blue dyes by novel metal-organic frameworks and organic/inorganic hybrid alginate-based dual network gel composites. Int. J. Biol. Macromol. 2023, 253, 127034. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.Y.; Liu, X.Y.; Lu, H.; He, Q.D.; Ding, K.; Wang, X.H.; Wang, W.B.; Guo, F. Chitosan-based composite hydrogel with a rigid-in-flexible network structure for pH-universal ultra-efficient removal of dye. Int. J. Biol. Macromol. 2023, 241, 124579. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Zohra, S.T.; Ijaz, S.; Iqbal, M.; Iqbal, J.; Bibi, I.; Nouren, S.; Messaoudi, N.E.; Nazir, A. Cellulose-based materials and their adsorptive removal efficiency for dyes: A review. Int. J. Biol. Macromol. 2023, 224, 1337–1355. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; He, Q.D.; Xing, H.F.; Feng, K.; Guo, F.; Wang, W.B. Core-shell alginate beads as green reactor to synthesize grafted composite beads to efficiently boost single/co-adsorption of dyes and Pb(II). Int. J. Biol. Macromol. 2022, 206, 10–20. [Google Scholar] [CrossRef]
- Yao, P.; Liu, Y.; Tang, X.; Lu, S.X.; Li, Z.; Yao, Y. Synthesis of reusable NH2-MIL-125(Ti)@ polymer monolith as efficient adsorbents for dyes wastewater remediation. Green Chem. Eng. 2023, 4, 439–447. [Google Scholar] [CrossRef]
- de Figueiredo Neves, T.; Camparotto, N.G.; de Vargas Brião, G.; Mastelaro, V.R.; Vieira, M.G.A.; Dantas, R.F.; Prediger, P. Synergetic effect on the adsorption of cationic and anionic emerging contaminants on polymeric membranes containing Modified-Graphene Oxide: Study of mechanism in binary systems. J. Mol. Liq. 2023, 383, 122045. [Google Scholar]
- Guan, F.C.; Tao, J.; Yao, Q.; Li, Z.; Zhang, Y.H.; Feng, S.; Sun, J.B.; Yang, Q.; Song, X.C.; Guo, J.; et al. Alginate-based aerogel fibers with a sheath-core structure for highly efficient methylene blue adsorption via directed freezing wet-spinning. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132706. [Google Scholar] [CrossRef]
- Kasbaji, M.; Mennani, M.; Grimi, N.; Oubenali, M.; Mbarki, M.; Zakhem, H.E.; Moubarik, A. Adsorption of cationic and anionic dyes onto coffee grounds cellulose/sodium alginate double-network hydrogel beads: Isotherm analysis and recyclability performance. Int. J. Biol. Macromol. 2023, 239, 124288. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wen, H.M.; Zheng, T.H.; Liu, X.H.; Wang, Z.Q.; Tian, S.L.; Fan, H.; Chen, Y.J.; Zhao, H.X.; Wang, Y.X. Engineering sodium alginate-SiO2 composite beads for efficient removal of methylene blue from water. Int. J. Biol. Macromol. 2023, 239, 124279. [Google Scholar] [CrossRef]
- Wang, W.B.; Wang, A.Q. Perspectives on green fabrication and sustainable utilization of adsorption materials for wastewater treatment. Chem. Eng. Res. Des. 2022, 187, 541–548. [Google Scholar] [CrossRef]
- Aslam, A.A.; Hassan, S.U.; Saeed, M.H.; Kokab, O.; Ali, Z.; Nazir, M.S.; Siddiqi, W.; Aslam, A.A. Cellulose-based adsorbent materials for water remediation: Harnessing their potential in heavy metals and dyes removal. J. Clean. Prod. 2023, 421, 138555. [Google Scholar] [CrossRef]
- Liu, W.X.; Lou, T.; Wang, X.J. Enhanced dye adsorption with conductive polyaniline doped chitosan nanofibrous membranes. Int. J. Biol. Macromol. 2023, 242, 124711. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Gong, W.L.; Wu, M.B.; Liu, L.; Qiu, X.X.; Shan, Y.T.; Yao, J.M. Amphoteric cellulose microspheres for the efficient remediation of anionic and cationic dyeing wastewater. Sep. Purif. Technol. 2023, 309, 123035. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.L.; Ding, T.; Song, Y.J.; Li, H.C.; Li, D.Q.; Chen, S.; Xu, F. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes. Carbohydr. Polym. 2022, 276, 118789. [Google Scholar] [CrossRef]
- Dong, K.; Xu, K.; Wei, N.; Fang, Y.Y.; Qin, Z.Y. Three-dimensional porous sodium alginate/gellan gum environmentally friendly aerogel: Preparation, characterization, adsorption, and kinetics studies. Chem. Eng. Res. Des. 2022, 179, 227–236. [Google Scholar] [CrossRef]
- Asim, N.; Badiei, M.; Alghoul, M.; Mohammad, M.; Fudholi, A.; Akhtaruzzaman, M.; Amin, N.; Sopian, K. Biomass and industrial wastes as resource materials for aerogel preparation: Opportunities, challenges, and research directions. Ind. Eng. Chem. Res. 2019, 58, 17621–17645. [Google Scholar] [CrossRef]
- Ren, M.; Ji, X.; Kong, F.; Zhou, C.S.; Yagoub, A.E.A.; Liang, J.K.; Ye, X.F.P.; Gu, Z.R.; Ma, Q.N.; Fan, X.Y.; et al. Preparation and characterization of bio-inspired full-biomass-derived aerogel with vertically aligned structure. Chem. Eng. J. 2023, 475, 146425. [Google Scholar] [CrossRef]
- Si, Y.; Wang, X.; Yan, C.; Yang, L.; Yu, J.Y.; Ding, B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 2016, 28, 9512–9518. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.S.; Chen, L.Y.; Zhou, Z.H.; Mao, Z.P.; Wang, B.J.; Feng, X.L. Eco-friendly and underwater superelastic cellulose nanofibrous aerogels for efficient capture and high-throughput protein separation. Sep. Purif. Technol. 2024, 328, 125062. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Gao, K.; Li, Y.; Wang, S.Z.; Xie, F.W.; Jia, X.H.; Song, H.J. Biomimetic superelastic sodium alginate-based sponges with porous sandwich-like architectures. Carbohydr. Polym. 2021, 272, 118527. [Google Scholar] [CrossRef]
- Dutt, M.A.; Hanif, M.A.; Nadeem, F.; Bhatti, H.N. A review of advances in engineered composite materials popular for wastewater treatment. J. Environ. Chem. Eng. 2020, 8, 104073. [Google Scholar] [CrossRef]
- Nikolov, S.; Fabritius, H.; Petrov, M.; Lymperakis, L.; Sachs, C.; Raabe, D.; Neugebauer, J. Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J. Mech. Behav. Biomed. Mater. 2011, 4, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Aghbashlo, M.; Amiri, H.; Moosavi Basri, S.M.; Rastegari, H.; Lam, S.S.; Pan, J.T.; Gupta, V.K.; Tabatabaei, M. Tuning chitosan’s chemical structure for enhanced biological functions. Trends Biotechnol. 2023, 41, 785–797. [Google Scholar] [CrossRef]
- Hao, Z.X.; Zhao, Q.; Wang, Y.W.; Lu, H.; Liu, X.Y.; He, Q.D.; Wang, T.Y.; Wang, J.X.; He, J.L.; Wang, W.B. Porous N-doped carbon converted from protein-rich shrub enables record-high removal of p-nitrophenol: Superior performance and mechanism. Mater. Today Sustain. 2023, 23, 100440. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Q.; Jia, X.; Li, Y.; Wang, S.Z.; Song, H.J. Enhancement of wastewater treatment by underwater superelastic fiber-penetrated lamellar monolith. J. Hazard. Mater. 2021, 403, 124016. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.F.; Yi, C.; Xu, M.; Park, J.S.; Kim, D.; Shin, C.H.; Ryu, M.H.; Zhao, Y.F. Adsorption of As(III) and As(V) by using the Fenton reaction modified kapok fiber. J. Environ. Chem. Eng. 2021, 9, 105918. [Google Scholar] [CrossRef]
- Arumughan, V.; Nypelö, T.; Hasani, M.; Larsson, A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv. Colloid Interface Sci. 2021, 298, 102529. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xia, R.; Zheng, L.; Yuan, T.Q.; Sun, R.C. Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nanofiber with enhanced mechanical properties. Carbohydr. Polym. 2019, 224, 115164. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, M.; Taghizadeh, A.; Yazdi, M.K.; Zarrintaj, P.; Stadler, F.J.; Ramsey, J.D.; Habibzadeh, S.; Rad, S.H.; Naderi, G.; Saeb, M.R.; et al. Chitosan-based inks for 3D printing and bioprinting. Green Chem. 2022, 24, 62–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.; Mu, M.; Wang, L.S.; Fan, Y.; Liu, X.F. Eco-friendly ferrocene-functionalized chitosan aerogel for efficient dye degradation and phosphate adsorption from wastewater. Chem. Eng. J. 2022, 439, 135605. [Google Scholar] [CrossRef]
- Kumar, P.; Faujdar, E.; Singh, R.K.; Paul, S.; Kukrety, A.; Chhibber, V.K.; Ray, S.S. High CO2 absorption of O-carboxymethylchitosan synthesised from chitosan. Environ. Chem. Lett. 2018, 16, 1025–1031. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zhang, X.; Yang, Y.; Duan, J.Y. A high-efficiency and plane-enhanced chitosan film for cefotaxime adsorption compared with chitosan particles in water. Chem. Eng. J. 2021, 413, 127494. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.C.; Guo, Y.L.; Liu, J.R.; Dong, J.W.; Wang, T.B.; Hao, D.; Zhang, Y.Q. FTIR determination of the degree of molar substitution for hydroxypropyl chitosan. Carbohydr. Polym. 2024, 339, 122229. [Google Scholar] [CrossRef]
- Pacheco, K.M.L.; Torres, B.B.M.; Sanfelice, R.C.; da Costa, M.M.; Assis, L.; Marques, R.B.; Filho, A.L.M.M.; Tim, C.R.; Pavinatto, A. Chitosan and chitosan/turmeric-based membranes for wound healing: Production, characterization and application. Int. J. Biol. Macromol. 2023, 253 Pt 7, 127425. [Google Scholar] [CrossRef]
- Kloster, G.A.; Marcovich, N.E.; Mosiewicki, M.A. Composite films based on chitosan and nanomagnetite. Eur. Polym. J. 2015, 66, 386–396. [Google Scholar] [CrossRef]
- Pawlak, A.; Mucha, M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 2003, 396, 153–166. [Google Scholar] [CrossRef]
- Pereda, M.; Aranguren, M.I.; Marcovich, N.E. Characterization of chitosan/caseinate films. J. Appl. Polym. Sci. 2008, 107, 1080–1090. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Tammer, M.G. Sokrates: Infrared and Raman characteristic group frequencies: Tables and charts. Colloid Polym. Sci. 2004, 283, 235. [Google Scholar] [CrossRef]
- Arooj, A.; Khan, M.; Munawar, K.S. Preparation and physicochemical characterization of starch/pectin and chitosan blend bioplastic films as future food packaging materials. J. Environ. Chem. Eng. 2024, 12, 111825. [Google Scholar] [CrossRef]
- Zhang, B.W.; Jiang, Z.; Li, X.; Wu, Z.Y.; Liu, Y.M.; Hu, J.; Zhang, C.H.; Chen, J.Y.; Zhou, Y.S.; Rao, J.; et al. Facile preparation of biocompatible and antibacterial water-soluble films using polyvinyl alcohol/carboxymethyl chitosan blend fibers via centrifugal spinning. Carbohydr. Polym. 2023, 317, 121062. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Historical review on chitin and chitosan biopolymers. Environ. Chem. Lett. 2019, 17, 1623–1643. [Google Scholar] [CrossRef]
- De Moliner, F.; Knox, K.; Gordon, D.; Lee, M.; Tipping, W.J.; Geddis, A.; Reinders, A.; Ward, J.M.; Oparka, K.; Vendrell, M. A palette of minimally tagged sucrose analogues for real-time Raman imaging of intracellular plant metabolism. Angew. Chem. 2021, 133, 7715–7720. [Google Scholar] [CrossRef]
- Zhang, K.; Peschel, D.; Helm, J.; Groth, T.; Fischer, S. FT Raman investigation of novel chitosan sulfates exhibiting osteogenic capacity. Carbohydr. Polym. 2011, 83, 60–65. [Google Scholar] [CrossRef]
- Shih, C.; Lupoi, J.S.; Smith, E.A. Raman spectroscopy measurements of glucose and xylose in hydrolysate: Role of corn stover pretreatment and enzyme composition. Bioresour. Technol. 2011, 102, 5169–5176. [Google Scholar] [CrossRef]
- Javed, M.; Huang, H.; Ma, Y.; Ettoumi, F.; Wang, L.; Xu, Y.Q.; El-Seedi, H.R.; Ru, Q.M.; Luo, Z.S. Construction of self-assembled nano cellulose crystals/chitosan nanobubbles composite hydrogel with improved gallic acid release property. Food Chem. 2024, 438, 137948. [Google Scholar] [CrossRef] [PubMed]
- Da Róz, A.L.; Leite, F.L.; Pereiro, L.V.; Nascente, P.A.P.; Zucolotto, V.; Oliveira, O.N., Jr.; Carvalho, A.J.F. Adsorption of chitosan on spin-coated cellulose films. Carbohydr. Polym. 2010, 80, 65–70. [Google Scholar] [CrossRef]
- Zhuang, S.; Zhu, K.; Wang, J. Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(II) removal. J. Clean. Prod. 2021, 285, 124911. [Google Scholar] [CrossRef]
- Yang, Y.; Shan, L.; Shen, H.; Qiu, J. Green and facile fabrication of thermal superamphiphobic nanofibrillated-cellulose/chitosan/OTS composites through mechano-chemical method. Fibers Polym. 2021, 22, 1407–1415. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Chen, M.; Xiao, N.Y.; Zhang, J.M.; Liu, C.F. Development of functional chitosan-based composite films incorporated with hemicelluloses: Effect on physicochemical properties. Carbohydr. Polym. 2020, 246, 116489. [Google Scholar] [CrossRef]
- Mahmodi, G.; Zarrintaj, P.; Taghizadeh, A.; Taghizadeh, M.; Manouchehri, S.; Dangwal, S.; Ronte, A.; Ganjali, M.R.; Ramsey, J.D.; Kim, S.J.; et al. From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydr. Res. 2020, 489, 107930. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; He, Y.; Liang, J.; Jin, Q.; Ou, Y.C.; Wu, J.Z. First cadmium coordination compound as an efficient flocculant for Congo red. Inorg. Chem. Commun. 2022, 141, 109544. [Google Scholar] [CrossRef]
- Han, G.; Du, Y.; Huang, Y.; Wang, W.J.; Su, S.P.; Liu, B.B. Study on the removal of hazardous Congo red from aqueous solutions by chelation flocculation and precipitation flotation process. Chemosphere 2022, 289, 133109. [Google Scholar] [CrossRef] [PubMed]
Project/Operation | Cost/Benefit Parameters | Records |
---|---|---|
Caragana | CNY 0 | Natural biomass |
Chitosan | CNY 1000/t | Purchased from the manufacturer |
The cost of transporting one load of raw materials | CNY 200–300 | Caragana is loaded and transported by truck |
Other chemical reagent prices | CNY 300/t | Average market price |
Water consumption per batch | 10 t water/t | Industrial water price is CNY 3.0/t |
Electric energy loss | 200 kWh/t | Industrial electricity is priced at CNY 0.725/kWh |
Purification capacity of dye wastewater | 2 g/L | This work |
Total cost | 1945 ¥/t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, N.; Ge, H.; Liu, X.; He, Q.; Wang, W.; Ma, W.; Guo, F. Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal. Nanomaterials 2024, 14, 1510. https://doi.org/10.3390/nano14181510
Luo N, Ge H, Liu X, He Q, Wang W, Ma W, Guo F. Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal. Nanomaterials. 2024; 14(18):1510. https://doi.org/10.3390/nano14181510
Chicago/Turabian StyleLuo, Ning, Hanwen Ge, Xiangyu Liu, Qingdong He, Wenbo Wang, Wenyuan Ma, and Fang Guo. 2024. "Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal" Nanomaterials 14, no. 18: 1510. https://doi.org/10.3390/nano14181510
APA StyleLuo, N., Ge, H., Liu, X., He, Q., Wang, W., Ma, W., & Guo, F. (2024). Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal. Nanomaterials, 14(18), 1510. https://doi.org/10.3390/nano14181510