Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Choice of Modifying Agent and Solvent for Gels with Different Prehistory
3.2. Characterization of Gel-1
3.3. Characterization of Gel-2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesserwan, F.; Ahmad, M.N.; Khalil, M.; El-Rassy, H. Hybrid CaO/Al2O3 Aerogel as Heterogeneous Catalyst for Biodiesel Production. Chem. Eng. J. 2020, 385, 123834. [Google Scholar] [CrossRef]
- Zion, N.; Cullen, D.A.; Zelenay, P.; Elbaz, L. Heat-Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angew. Chem.-Int. Ed. 2020, 59, 2483–2489. [Google Scholar] [CrossRef]
- Jung, S.M.; Kim, D.W.; Jung, H.Y. Unconventional Capacity Increase Kinetics of a Chemically Engineered SnO2aerogel Anode for Long-Term Stable Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2020, 8, 8244–8254. [Google Scholar] [CrossRef]
- Patil, R.; Phadatare, M.; Blomquist, N.; Örtegren, J.; Hummelgård, M.; Meshram, J.; Dubal, D.; Olin, H. Highly Stable Cycling of Silicon-Nanographite Aerogel-Based Anode for Lithium-Ion Batteries. ACS Omega 2021, 6, 6600–6606. [Google Scholar] [CrossRef] [PubMed]
- Yorov, K.E.; Yapryntsev, A.D.; Baranchikov, A.E.; Khamova, T.V.; Straumal, E.A.; Lermontov, S.A.; Ivanov, V.K. Luminescent Alumina-Based Aerogels Modified with Tris(8-Hydroxyquinolinato)Aluminum. J. Solgel Sci. Technol. 2018, 86, 400–409. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Yorov, K.E.; Kamilov, R.K.; Kottsov, S.Y.; Teplonogova, M.A.; Khamova, T.V.; Popkov, M.A.; Tronev, I.V.; Baranchikov, A.E.; Ivanov, V.K. Epoxide Synthesis of Binary Rare Earth Oxide Aerogels with High Molar Ratios (1:1) of Eu, Gd, and Yb. J. Solgel Sci. Technol. 2023, 107, 586–597. [Google Scholar] [CrossRef]
- García Ramírez, V.M.; García Murillo, A.; de Carrillo Romo, F.J.; Alvarez González, R.I.; Madrigal Bujaidar, E. A New Ultrafine Luminescent La2O3:Eu3+ Aerogel. Gels 2023, 9, 615. [Google Scholar] [CrossRef]
- Rao, A.V.; Zhao, S.; Pajonk, G.M.; Bangi, U.K.H.; Rao, A.P.; Koebel, M.M. Sodium Silicate-Based Aerogels by Ambient Pressure Drying. In Springer Handbook of Aerogels; Aegerter, M.A., Leventis, N., Koebel, M., Steiner, S.A., III, Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 393–417. [Google Scholar]
- Hüsing, N.; Schubert, U.; Misof, K.; Fratzl, P. Formation and Structure of Porous Gel Networks from Si(OMe)4 in the Presence of A(CH2)NSi(OR)3 (A = Functional Group). Chem. Mater. 1998, 10, 3024–3032. [Google Scholar] [CrossRef]
- Nah, H.Y.; Kim, Y.; Kim, T.; Lee, K.Y.; Parale, V.G.; Lim, C.H.; Seo, J.Y.; Park, H.H. Comparisonal Studies of Surface Modification Reaction Using Various Silylating Agents for Silica Aerogel. J. Solgel Sci. Technol. 2020, 96, 346–359. [Google Scholar] [CrossRef]
- Torres, R.B.; Vareda, J.P.; Lamy-Mendes, A.; Durães, L. Effect of Different Silylation Agents on the Properties of Ambient Pressure Dried and Supercritically Dried Vinyl-Modified Silica Aerogels. J. Supercrit. Fluids 2019, 147, 81–89. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Baumann, T.F.; Wang, Y.M.; Van Buuren, T.; Poco, J.F.; Satcher, J.H.; Hamza, A.V. Monolithic, High Surface Area, Three-Dimensional GeO2 Nanostructures. Appl. Phys. Lett. 2006, 88, 103117. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G.; Chen, B.; Liu, T.; Mei, Y.; Luo, X. Monolithic Germanium Oxide Aerogel with the Building Block of Nano-Crystals. Mater. Lett. 2013, 104, 41–43. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B.; Liu, T.; Mei, Y.; Ren, H.; Bi, Y.; Luo, X.; Zhang, L. The Synthesis and Characterization of Germanium Oxide Aerogel. J. Non-Cryst. Solids 2012, 358, 3322–3326. [Google Scholar] [CrossRef]
- Han, L.; Wei, Q.; Chen, H.; Tang, J.; Wei, M. Open-Framework Germanates Derived GeO2/C Nanocomposite as a Long-Life and High-Capacity Anode for Lithium-Ion Batteries. J. Alloys Compd. 2021, 881, 160533. [Google Scholar] [CrossRef]
- Vekhov, V.A.; Vitukhnovskaya, B.S.; Doronkina, R.F. Change in the State and Solubility of Germanium Dioxide in Ammonical Aqueous Solutions. Russ. J. Inorg. Chem. 1966, 11, 132–135. [Google Scholar]
- Gajtko, O.M.; Veselova, V.O.; Khvoshchevskaya, D.A.; Kottsov, S.Y. Method for Producing Aerogel Based on Amorphous Germanium Dioxide. Patent RU2796091C1, 28 December 2022. [Google Scholar]
- Iacomi, P.; Llewellyn, P.L. PyGAPS: A Python-Based Framework for Adsorption Isotherm Processing and Material Characterisation. Adsorption 2019, 25, 1533–1542. [Google Scholar] [CrossRef]
- Lobaz, V.; Rabyk, M.; Pánek, J.; Doris, E.; Nallet, F.; Štěpánek, P.; Hrubý, M. Photoluminescent Polysaccharide-Coated Germanium(IV) Oxide Nanoparticles. Colloid. Polym. Sci. 2016, 294, 1225–1235. [Google Scholar] [CrossRef]
- Adachi, T.; Sakka, S. Sintering of Silica Gel Derived from the Alkoxysilane Solution Containing N,N-Dimethylformamide. J. Non-Cryst. Solids 1988, 100, 250–253. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Pedraza, F.; Parale, V.G.; Park, H.H. Organically Modified Silica Aerogel with Different Functional Silylating Agents and Effect on Their Physico-Chemical Properties. J. Non-Cryst. Solids 2016, 453, 164–171. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Kulkarni, M.M.; Amalnerkar, D.P.; Seth, T. Surface Chemical Modification of Silica Aerogels Using Various Alkyl-Alkoxy/Chloro Silanes. Appl. Surf. Sci. 2003, 206, 262–270. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Kim, Y.H.; Moon, M.J.; Ahn, Y.S.; Yeo, J.G. A Cost-Effective and Fast Synthesis of Nanoporous SiO2 Aerogel Powders Using Water-Glass via Ambient Pressure Drying Route. Solid. State Sci. 2007, 9, 628–635. [Google Scholar] [CrossRef]
- Feng, S.; Tsai, M.; Greenblatt, M. Preparation, Ionic Conductivity, and Humidity-Sensing Property of Crystalline Microporous Sodium Germanates, Na3HGe7O16.Cntdot.XH2O, x = 0–6. I. Chem. Mater. 1992, 4, 388–393. [Google Scholar] [CrossRef]
- Madon, M.; Gillet, P.; Julien, C.; Price, G.D. A Vibrational Study of Phase Transitions among the GeO2 Polymorphs. Phys. Chem. Miner. 1991, 18, 7–18. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, W.; Wang, D.; Zhong, Q. Study on the Reaction Mechanism of the Propylene Oxide Rearrangement via in Situ DRIFTS. Chem. Eng. J. 2017, 307, 1047–1054. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, H.; Li, X.; Ding, H.; Ji, H. Hyperelastic and Hydrophobic Silica Aerogels with Enhanced Compressive Strength by Using VTES/MTMS as Precursors. J. Non-Cryst. Solids 2019, 525, 119677. [Google Scholar] [CrossRef]
- Kottsov, S.Y.; Shmelev, M.A.; Baranchikov, A.E.; Kiskin, M.A.; Sharipov, A.U.; Efimov, N.N.; Rubtsova, I.K.; Nikolaevskii, S.A.; Kopitsa, G.P.; Khamova, T.V.; et al. Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. Molecules 2023, 28, 418. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids; Elsevier Ltd.: Oxford, UK; ISBN 9780080970356.
- Conradsson, T.; Zou, X.; Dadachov, M.S. Synthesis and Crystal Structure of a Novel Germanate: (NH4)4[(GeO2)3(GeO1.5F3)2]0.67H2O. Inorg. Chem. 2000, 39, 1716–1720. [Google Scholar] [CrossRef]
- Seguin, K.; Dallas, A.J.; Weineck, G. Rationalizing the Mechanism of HMDS Degradation in Air and Effective Control of the Reaction Byproducts. Metrol. Insp. Process Control. Microlithogr. XXII 2008, 6922, 692230. [Google Scholar] [CrossRef]
- Tan, I.H.; Da Silva, M.L.P.; Demarquette, N.R. Paper Surface Modification by Plasma Deposition of Double Layers of Organic Silicon Compounds. J. Mater. Chem. 2001, 11, 1019–1025. [Google Scholar] [CrossRef]
- Low, M.J.D.; Madison, N.; Ramamurthy, P. Infrared Spectra of Hydrogen and Water on Germania Gel Surfaces. Surf. Sci. 1969, 13, 238–250. [Google Scholar] [CrossRef]
- Low, M.J.D.; Matsushita, K. Infrared Spectra of the Surface Species Produced by Reactions of Ammonia with Germania Gel. J. Phys. Chem. 1969, 73, 908–910. [Google Scholar] [CrossRef]
- Veselova, V.O.; Khvoshchevskaya, D.A.; Golodukhina, S.V.; Kottsov, S.Y.; Gajtko, O.M. One Simple Approach to Novel Germania and Germanate Aerogels. Microporous Mesoporous Mater. 2024, 379, 113282. [Google Scholar] [CrossRef]
- Khatoon, N.; Subedi, B.; Chrisey, D.B. Synthesis of Silicon and Germanium Oxide Nanostructures via Photonic Curing; a Facile Approach to Scale Up Fabrication. ChemistryOpen 2024, 13, e202300260. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, X.; Chen, D.; Bian, X.; Liu, W.; Han, L. Denatured Proteins Show New Vitality: Green Synthesis of Germanium Oxide Hollow Microspheres with Versatile Functions by Denaturing Proteins around Bubbles. Aggregate 2023, 4, e204. [Google Scholar] [CrossRef]
- Schwertfeger, F.; Zimmerman, A.; Krempel, H. Use of Inorganic Aerogels in Pharmacy. U.S. Patent 6,280,744, 28 August 2001. [Google Scholar]
Gel-1 | Gel-2 | |
---|---|---|
Precursor | GeCl4 | GeO2 |
Germanium concentration in the gel | 0.3 mmol/mL | 0.6 mmol/mL |
Solvent | Butyl acetate | Water |
pH | Acidic | Basic |
Modifier solvent | Heptane | DMF |
Phase composition | GeO2 | (NH4)3H(Ge7O16)(H2O)x |
Modifier | SBET, m2/g | |
---|---|---|
Gel-1 | Gel-2 | |
HMDS | <10 | 106 |
MTMS | 77 | <10 |
DMCS | <10 | <10 |
Modifier Content, wt.% | |||||||
---|---|---|---|---|---|---|---|
0 (SCD) | 1 | 2.5 | 5 | 10 | 15 | ||
Gel-1 | Ge/Si | - | 0.5 | 0.2 | 0.1 | 0.05 | 0.03 |
SBET, m2/g | 180 | 24 | 62 | 89 | 77 | <10 | |
Gel-2 | Ge/Si | - | 2.3 | 0.9 | 0.5 | 0.2 | 0.15 |
SBET, m2/g | 93 | 75 | 65 | 140 | 106 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselova, V.O.; Kottsov, S.Y.; Golodukhina, S.V.; Khvoshchevskaya, D.A.; Gajtko, O.M. Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials 2024, 14, 1511. https://doi.org/10.3390/nano14181511
Veselova VO, Kottsov SY, Golodukhina SV, Khvoshchevskaya DA, Gajtko OM. Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials. 2024; 14(18):1511. https://doi.org/10.3390/nano14181511
Chicago/Turabian StyleVeselova, Varvara O., Sergey Yu. Kottsov, Svetlana V. Golodukhina, Daria A. Khvoshchevskaya, and Olga M. Gajtko. 2024. "Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying" Nanomaterials 14, no. 18: 1511. https://doi.org/10.3390/nano14181511
APA StyleVeselova, V. O., Kottsov, S. Y., Golodukhina, S. V., Khvoshchevskaya, D. A., & Gajtko, O. M. (2024). Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials, 14(18), 1511. https://doi.org/10.3390/nano14181511