How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey
Abstract
:1. Introduction
- We survey how the electrical properties of nanocellulose can be influenced either by a conductive agent or n or p doping.
- We present a new concept of how a transistor consisting only of nanocellulose compounds can be created.
- We review the high potential for miniaturisation of nanocellulose from transistors down to single-electron transistors.
- We envision a PDK and EDA design flow for fully biodegradable nanocellulose chips.
2. Related Work: Nanocellulose Has a High Potential for Microelectronics
Recent Achievements in Sustainable Microelectronics | |||||
---|---|---|---|---|---|
Year | Reference | Organic | Biodegradable | Flexible | Nanocellulose |
2024 | [38] | Yes | Yes | Yes | Substrate |
[39] | Hybrid | Yes | Yes | ||
[40] | Hybrid | Yes | |||
2023 | [41] | Yes | Yes | Yes | Substrate and dielectric |
[42] | Yes | Yes | Yes | Dielectric | |
[43] | Yes | Yes | Yes | Dielectric | |
2022 | [44] | Yes | Yes | Yes | Substrate and dielectric |
[45] | Yes | Yes | Yes | P-type semiconductor | |
[33] | Yes | Yes | Yes | Substrate | |
[46] | Yes | Yes | Yes | N- and P-type semiconductor | |
[47] | Yes | Yes | Yes | Substrate | |
[48] | Hybrid | Yes | Yes | ||
2021 | [49] | Yes | Yes | Yes | Dielectric |
[50] | Yes | Yes | N-type semiconductor | ||
2020 | [51] | Hybrid | |||
2018 | [52] | Hybrid | Yes | Yes | Dielectric |
2016 | [53] | Hybrid | Yes | Yes | Substrate |
2014 | [37] | Hybrid | Yes | Substrate and dielectric |
- A transistor fully based on nanocellulose-derived materials has yet to be fabricated, and
- A PDK and standard cell library based on fully biodegradable devices have yet to be developed.
3. Survey on Nanocellulose Conductivity
4. Electronic Design Automation for Nanocellulose-Based Technology
- Fabrication: The first step towards such a solution is to fabricate a single transistor using a nanocellulose-based fabrication process. The production of nanocellulose-based conductors and semiconductors is described in Figure 3.
- Process Design Kit: The precision of the fabrication steps must be evaluated via measurements of the physical dimensions of the transistors in comparison to the intended dimensions, described in the device layout. The limits of precision of the fabrication process are used to define the layout design rules. These rules include, for example, the minimum width and length of the electrodes, as well as the minimum spacing between two electrodes. Transistors of multiple sizes are fabricated and electrically characterised in order to construct the device models used for software simulation. The parasitic elements, namely resistors and capacitors, resulting from the wire conductors and contact capacitances of the fabricated devices are also characterised and modelled. The collection of models for the fabricated device is called a process design kit (PDK). Furthermore, the expected variation models for device parameters such as dielectric thickness and channel width are also included in the PDK. The PDK is at the most fundamental level of abstraction of digital design, namely the transistor level.
- Standard Cell Library: The next level of abstraction is the logic-gate level, where multiple transistors are connected to perform basic logic operations, such as NOT, AND, and OR. It is important to note that any complex logic function can be implemented using a single type of logic gate, for instance, the NOT-AND (NAND) gate. Such universal gates enable the implementation of any logic computation, although not the most efficient or fast implementation. To increase the performance of a computation, current commercial cell libraries for silicon-based chips include tens of basic logic functionalities with a large variety of sizes and threshold voltages. Chang et al. presented the first open-source cell library for organic thin-film transistors (OTFTs) The library is composed of six basic logic gates, but only p-type transistors are considered [51].
- Cell Library-Based Digital Design: The highest level of abstraction discussed in this survey is the module level. In this context, a module is a set of appropriately interconnected logic gates (defined in the cell library) that perform complex computations, ranging from additions to multiplications up to a complete microprocessor. Module functionality is most often described in a Register Transfer Level (RTL) hardware description language such as Verilog or VHDL. Hardware synthesis tools such as Yosys (open source) [89], or Synopsys Design Compiler (commercial) transform the RTL description into a specific sequence of logic gates and their connections. The importance of the cell library is in the reduction of the design space considered by the synthesis tool in order to reach a feasible solution in a manageable time frame. Then, so-called Place and Route (PNR) tools position the synthesized logic gates in an empty circuit layout and define the exact routing from gate to gate such that non-idealities, such as wiring delays, are minimised. The final result is a fabrication layout in Graphic Design System (GDS) format describing the exact position of each transistor (gates are made of transistors) and each wire connection such that the intended module functionality is performed by the fabricated module.
5. Further Extensions of the Nanocellulose Composite for Improved Storage and Operation
- DNA as long-term storage: NC preserves DNA effectively, with no degradation over 24 months [21]. However, the full NC compound improves protection further. Under suitable optimised conditions, DNA can be preserved with error codes for thousands of years [90].Repair enzymes and their substrates also remain stable in NC, suggesting that DNA preservation may be even further improved with active repair and maintenance, akin to natural processes [91]. NC serves as an excellent host material for these preservation efforts.
- Specific light-gated enzymes to operate DNA as long-term storage: The efficient use of DNA storage requires nucleotide processing enzymes for read-in and read-out. These enzymes can be rendered light-gated, controlled by domains such as BLUF, LOV, and LOV2, which respond to visible light by altering their structure activating the enzyme fused to them. An example is LOV-Taq polymerase, where the LOV domain controls Taq polymerase activity, extending the DNA strand according to a template sequence. The BLUF domain, activated by blue light, offers intrinsic OFF switching after a set time (30 min; modifiable to 5 min through protein engineering [21]). Current efforts focus on optimising these enzyme properties through protein engineering approaches (e.g., [92,93]) to maintain and operate DNA storage in NC.
- Transparent display from nanocellulose: Transparent NC provides the protective layer of the display, ensuring durability and functionality, as well as foldability, and using OLED for light emission [94] or using electrochromic display screens printed transparent nanocellulose-based substrates [95]. By integrating these advanced features, NC chips can achieve a high degree of functionality and sustainability, making them suitable for a wide range of applications in semiconductor technologies and beyond.
6. Discussion
7. Outlook and Conclusions
- (i)
- In this survey, we argue for the feasibility of constructing a high-performance nanocellulose-based, using nanocellulose for the dielectric, conductive, and semiconductive layers. Our findings indicate that p-type and n-type nanocellulose materials are already available, suggesting that the development of an entirely cellulose-based transistor is imminent. Such a development would be a game changer, as it promises a fully biodegradable alternative to conventional electronics, eliminating the use of toxic inks and other materials.
- (ii)
- Nanocellulose’s properties extend beyond semiconductivity. This versatility allows for the integration of DNA for long-term or cold storage, making use of light-gated enzymes for DNA storage. This review highlights the significant potential for further improvement for instance, new light-gated enzyme constructs and modifications of fluorescence by different fluorescent proteins.
- (iii)
- Additionally, the potential for miniaturisation of fully nanocellulose transistors towards single-electron transistors (SETs) represents a crucial advancement in this technology.
- (iv)
- Moreover, the design automation steps outlined in this paper, when considered alongside the current literature on material science and chip fabrication, provide a clear pathway for the advancement of nanocellulose-based electronics. This comprehensive approach not only emphasises the readiness of the necessary components but also paves the way for future innovations in environmentally friendly and sustainable electronic devices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BNC | Bacterial nanocellulose |
DNA | Deoxynucleic acid |
EDA | Electronic design automation |
FET | Field-effect transistor |
GDS | Graphic design system |
GO | Graphene oxide |
ICCN | Ionic conductive cellulose nanopaper |
LGENC | Low-oxidized graphene/nanocellulose hybrid |
NC | Nanocellulose |
OFET | Organic field-effect transistor |
OTFT | Organic thin-film transistor |
PANI | Polyaniline |
PDK | Process design kit |
PNR | Place and route |
PPy | Polypyrrole |
RTL | Register transfer level |
SET | Single-electron transistor |
TFT | Thin-film transistor |
References
- Kondo, T. Hydrogen bonds in cellulose and cellulose derivatives. In Polysaccharides: Structural Diversity and Functional Versatility; Marcel Dekker: New York, NY, USA, 2005; pp. 69–98. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Ghilan, A.; Nicu, R.; Ciolacu, D.E.; Ciolacu, F. Insight into the Latest Medical Applications of Nanocellulose. Materials 2023, 16, 4447. [Google Scholar] [CrossRef]
- Qi, Y.; Guo, Y.; Liza, A.A.; Yang, G.; Sipponen, M.H.; Guo, J.; Li, H. Nanocellulose: A review on preparation routes and applications in functional materials. Cellulose 2023, 30, 4115–4147. [Google Scholar] [CrossRef]
- Samyn, P.; Meftahi, A.; Geravand, S.A.; Heravi, M.E.M.; Najarzadeh, H.; Sabery, M.S.K.; Barhoum, A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int. J. Biol. Macromol. 2023, 231, 123316. [Google Scholar] [CrossRef] [PubMed]
- Poletto, M.; Ornaghi, H.L.; Zattera, A.J. Native Cellulose: Structure, Characterization and Thermal Properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef]
- Marín, P.; Martirani-Von Abercron, S.M.; Urbina, L.; Pacheco-Sánchez, D.; Castañeda-Cataña, M.A.; Retegi, A.; Eceiza, A.; Marqués, S. Bacterial nanocellulose production from naphthalene. Microb. Biotechnol. 2019, 12, 662–676. [Google Scholar] [CrossRef]
- Abba, M.; Nyakuma, B.B.; Ibrahim, Z.; Ali, J.B.; Razak, S.I.A.; Salihu, R. Physicochemical, morphological, and microstructural characterisation of bacterial nanocellulose from Gluconacetobacter xylinus BCZM. J. Nat. Fibers 2022, 19, 4368–4379. [Google Scholar] [CrossRef]
- Tanskul, S.; Amornthatree, K.; Jaturonlak, N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydr. Polym. 2013, 92, 421–428. [Google Scholar] [CrossRef]
- Castiblanco, L.F.; Sundin, G.W. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. Mol. Plant Pathol. 2018, 19, 90–103. [Google Scholar] [CrossRef]
- da Gama, F.M.P.; Dourado, F. Bacterial NanoCellulose: What future? BioImpacts BI 2018, 8, 1. [Google Scholar]
- Fernandez Corujo, V.L.; Arroyo, S.M.; Cerrutti, P.; Foresti, M.L. Production of bacterial nanocellulose in alternative culture media under static and dynamic conditions. Lat. Am. Appl. Res. 2023, 53. [Google Scholar] [CrossRef]
- Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial cellulose—A masterpiece of nature’s arts. J. Mater. Sci. 2000, 35, 261–270. [Google Scholar] [CrossRef]
- Sardjono, S.A.; Suryanto, H.; Aminnudin, A.; Muhajir, M. Crystallinity and morphology of the bacterial nanocellulose membrane extracted from pineapple peel waste using high-pressure homogenizer. AIP Conf. Proc. 2019, 2120, 080015. [Google Scholar]
- Mohite, B.V.; Patil, S.V. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr. Polym. 2014, 106, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.K.; Thakur, V.K. Impact of physico-chemical properties of nanocellulose on rheology of aqueous suspensions and its utility in multiple fields: A review. J. Vinyl Addit. Technol. 2023, 29, 617–648. [Google Scholar] [CrossRef]
- Jing, S.; Wu, L.; Siciliano, A.P.; Chen, C.; Li, T.; Hu, L. The critical roles of water in the processing, structure, and properties of nanocellulose. ACS Nano 2023, 17, 22196–22226. [Google Scholar] [CrossRef]
- Börjesson, M.; Westman, G. Crystalline nanocellulose—Preparation, modification, and properties. In Cellulose—Fundamental Aspects and Current Trends; IntechOpen: London, UK, 2015; Chapter 7. [Google Scholar]
- Das, J.; Mishra, H.N. Electrochemical biosensor for monitoring fish spoilage based on nanocellulose as enzyme immobilization matrix. J. Food Meas. Charact. 2023, 17, 3827–3844. [Google Scholar] [CrossRef]
- Malarat, S.; Khongpun, D.; Limtong, K.; Sinthuwong, N.; Soontornapaluk, P.; Sakdaronnarong, C.; Posoknistakul, P. Preparation of nanocellulose from coffee pulp and its potential as a polymer reinforcement. ACS Omega 2023, 8, 25122–25133. [Google Scholar] [CrossRef]
- Bencurova, E.; Shityakov, S.; Schaack, D.; Kaltdorf, M.; Sarukhanyan, E.; Hilgarth, A.; Rath, C.; Montenegro, S.; Roth, G.; Lopez, D.; et al. Nanocellulose composites as smart devices with chassis, light-directed DNA storage, engineered electronic properties, and chip integration. Front. Bioeng. Biotechnol. 2022, 10, 869111. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, F.; Hu, C.; Zhu, Z.; Liu, B. Nanocellulose aerogel prepared using discarded cotton textiles: For constructing water evaporation and self-cooling thermoelectric systems. Ind. Crop. Prod. 2024, 221, 119412. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, Q.; Wang, E.; Liang, Y.; Han, W.; Miao, Y.; Huang, J.; Zhang, W. Developing cellulose nanofibrils/Na-montmorillonite composite air filter with efficient filtration ability for PM2. 5 and adsorption of formaldehyde. Appl. Surf. Sci. 2024, 657, 159737. [Google Scholar] [CrossRef]
- Shang, M.; Yu, J.; Li, J.; Huang, P.; Jia, X.; Miao, W.; Tian, L.; Sun, H.; Dai, Y.; Zhang, L. Cellulose/Poly (Vinyl Alcohol)/Graphene Composite Photothermal Aerogel Membrane for Solar-driven Seawater Desalination. Waste Biomass Valorization 2024, 15, 5549–5558. [Google Scholar] [CrossRef]
- Jung, Y.H.; Chang, T.H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V.W.; Mi, H.; Kim, M.; Cho, S.J.; Park, D.W.; et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, H.; Qiu, S.; Kuang, Y.; Zhou, J.; Lan, Y.; Sun, C.; Li, G.; Gong, S.; Ma, Z. Versatile Wood Cellulose for Biodegradable Electronics. Adv. Mater. Technol. 2021, 6, 2000928. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, H.; Duan, Y.; Xu, T.; Xie, H.; Du, H.; Si, C. Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int. J. Biol. Macromol. 2023, 253, 126903. [Google Scholar] [CrossRef]
- Ali, A.S.; Zaidan, K.M.; Al-Badran, A.I. Preparation of Poly (methyl methacrylate) thin film Capacitors on ITO-glass substrate. MJPS 2022, 9, 22–28. [Google Scholar] [CrossRef]
- Pak, K.; Seong, H.; Choi, J.; Hwang, W.S.; Im, S.G. Synthesis of ultrathin, homogeneous copolymer dielectrics to control the threshold voltage of organic thin-film transistors. Adv. Funct. Mater. 2016, 26, 6574–6582. [Google Scholar] [CrossRef]
- Konwar, G.; Saxena, P.; Raghuwanshi, V.; Rahi, S.; Tiwari, S.P. Multifunctional Flexible Organic Transistors with a High-k/Natural Protein Bilayer Gate Dielectric for Circuit and Sensing Applications. ACS Appl. Electron. Mater. 2022, 4, 2525–2533. [Google Scholar] [CrossRef]
- Xie, Y.; Ding, C.; Jin, Q.; Zheng, L.; Xu, Y.; Xiao, H.; Cheng, M.; Zhang, Y.; Yang, G.; Li, M.; et al. Organic transistor-based integrated circuits for future smart life. SmartMat 2024, 5, e1261. [Google Scholar] [CrossRef]
- Zschieschang, U.; Klauk, H. Organic transistors on paper: A brief review. J. Mater. Chem. C 2019, 7, 5522–5533. [Google Scholar] [CrossRef]
- Jia, D.; Xie, J.; Dirican, M.; Fang, D.; Yan, C.; Liu, Y.; Li, C.; Cui, M.; Liu, H.; Chen, G.; et al. Highly smooth, robust, degradable and cost-effective modified lignin-nanocellulose green composite substrates for flexible and green electronics. Compos. Part B Eng. 2022, 236, 109803. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, H.; Chen, Y.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. Highly transparent and flexible nanopaper transistors. ACS Nano 2013, 7, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Sabo, R.; Seo, J.H.; Ma, Z. Cellulose nanofiber composite substrates for flexible electronics. In Proceedings of the 2012 TAPPI International Conference on Nanotechnology for Renewable Materials, Montreal, QC, Canada, 4–7 June 2012; Citeseer: Princeton, NJ, USA, 2012; pp. 1–7. [Google Scholar]
- Seo, J.H.; Chang, T.H.; Lee, J.; Sabo, R.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. Microwave flexible transistors on cellulose nanofibrillated fiber substrates. Appl. Phys. Lett. 2015, 106, 262101. [Google Scholar] [CrossRef]
- Gaspar, D.; Fernandes, S.N.; de Oliveira, A.G.; Fernandes, J.G.; Grey, P.; Pontes, R.V.; Pereira, L.; Martins, R.; Godinho, M.H.; Fortunato, E. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 2014, 25, 094008. [Google Scholar] [CrossRef]
- Betker, M.; Erichlandwehr, T.; Sochor, B.; Erbes, E.; Kurmanbay, A.; Alon, Y.; Li, Y.; Fernandez-Cuesta, I.; Müller-Buschbaum, P.; Techert, S.A.; et al. Micrometer-Thin Nanocellulose Foils for 3D Organic Electronics. Adv. Funct. Mater. 2024, 2403952. [Google Scholar] [CrossRef]
- Rafiee, Z.; Elhadad, A.; Choi, S. Revolutionizing Papertronics: Advanced Green, Tunable, and Flexible Components and Circuits. Adv. Sustain. Syst. 2024, 8, 2400049. [Google Scholar] [CrossRef]
- Gupta, P.; Lukosiunas, J.; Marques, G.C.; Raths, S.; Stehlin, S.; Schlisske, S.; Exner, K.; Strunk, K.P.; Melzer, C.; Erk, P.; et al. Active matrix-based pressure sensor system with a 4 × 16 printed decoder designed with a flexible hybrid organic process design kit. Flex. Print. Electron. 2024, 9, 015006. [Google Scholar] [CrossRef]
- Konwar, G.; Rahi, S.; Tiwari, S.P. Decomposable Flexible Organic Transistors with a Cellulose-Based Gate Dielectric and Substrate for Biodegradable Electronics. ACS Appl. Mater. Interfaces 2023, 15, 35261–35271. [Google Scholar] [CrossRef]
- Konwar, G.; Rahi, S.; Tiwari, S.P. Exploration of a Cellulose-Based Biocompatible Gate Dielectric for Low-Voltage Organic Transistors. IEEE J. Flex. Electron. 2023, 2, 383–389. [Google Scholar] [CrossRef]
- Lu, S.; Smith, B.N.; Meikle, H.; Therien, M.J.; Franklin, A.D. All-Carbon Thin-Film Transistors Using Water-Only Printing. Nano Lett. 2023, 23, 2100–2106. [Google Scholar] [CrossRef]
- Thi, Q.V.; Ko, J.; Jo, Y.; Joo, Y. Ion-Incorporative, Degradable Nanocellulose Crystal Substrate for Sustainable Carbon-Based Electronics. ACS Appl. Mater. Interfaces 2022, 14, 43538–43546. [Google Scholar] [CrossRef] [PubMed]
- Vasheghani Farahani, M.S.; Nikzad, M.; Ghorbani, M. Fabrication of Fe-doped ZnO/nanocellulose nanocomposite as an efficient photocatalyst for degradation of methylene blue under visible light. Cellulose 2022, 29, 7277–7299. [Google Scholar] [CrossRef]
- Koga, H.; Nagashima, K.; Suematsu, K.; Takahashi, T.; Zhu, L.; Fukushima, D.; Huang, Y.; Nakagawa, R.; Liu, J.; Uetani, K.; et al. Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design. ACS Nano 2022, 16, 8630–8640. [Google Scholar] [CrossRef] [PubMed]
- Granelli, R.; Alessandri, I.; Gkoupidenis, P.; Vassalini, I.; Kovács-Vajna, Z.M.; Blom, P.W.M.; Torricelli, F. High-Performance Bioelectronic Circuits Integrated on Biodegradable and Compostable Substrates with Fully Printed Mask-Less Organic Electrochemical Transistors. Small 2022, 18, 2108077. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, A.S.; Zumeit, A.; Christou, A.; Dahiya, R. High-Performance n-Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Adv. Electron. Mater. 2022, 8, 2200098. [Google Scholar] [CrossRef]
- Williams, N.X.; Bullard, G.; Brooke, N.; Therien, M.J.; Franklin, A.D. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat. Electron. 2021, 4, 261–268. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D.; Cheng, Y.; Wang, S. Stepwise carbonization of nanocellulose to N-doped carbons with structural transformation and enhanced peroxymonosulfate activation. Chem. Eng. J. 2021, 407, 127185. [Google Scholar] [CrossRef]
- Chang, T.J.; Yao, Z.; Rand, B.P.; Wentzlaff, D. Organic-Flow: An Open-Source Organic Standard Cell Library and Process Development Kit. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 49–54. [Google Scholar] [CrossRef]
- Dai, S.; Chu, Y.; Liu, D.; Cao, F.; Wu, X.; Zhou, J.; Zhou, B.; Chen, Y.; Huang, J. Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat. Commun. 2018, 9, 2737. [Google Scholar] [CrossRef]
- Hassinen, T.; Alastalo, A.; Eiroma, K.; Tenhunen, T.M.; Kunnari, V.; Kaljunen, T.; Forsström, U.; Tammelin, T. All-Printed Transistors on Nano Cellulose Substrate. MRS Adv. 2016, 1, 645–650. [Google Scholar] [CrossRef]
- Haldar, T.; Wollandt, T.; Weis, J.; Zschieschang, U.; Klauk, H.; Weitz, R.T.; Burghartz, J.N.; Geiger, M. High-gain, low-voltage unipolar logic circuits based on nanoscale flexible organic thin-film transistors with small signal delays. Sci. Adv. 2023, 9, eadd3669. [Google Scholar] [CrossRef]
- Sharova, A.S.; Caironi, M. Sweet Electronics: Honey-Gated Complementary Organic Transistors and Circuits Operating in Air. Adv. Mater. 2021, 33, 2103183. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ma, Q.; Zhang, H.; Ma, Z.; Yang, R.; Zhu, J.Y. Producing Conductive Graphene–Nanocellulose Paper in One-pot. J. Polym. Environ. 2019, 27, 148–157. [Google Scholar] [CrossRef]
- Liu, K.; Hu, J.; Kong, Z.; Hu, J.; Tian, Z.; Hou, J.; Qin, J.; Liu, C.; Liang, S.; Wu, H.; et al. High-yield, high-conductive graphene/nanocellulose hybrids prepared by Co-exfoliation of low-oxidized expanded graphite and microfibrillated cellulose. Compos. Part B Eng. 2021, 225, 109250. [Google Scholar] [CrossRef]
- Sheng, N.; Chen, S.; Zhang, M.; Wu, Z.; Liang, Q.; Ji, P.; Wang, H. TEMPO-Oxidized Bacterial Cellulose Nanofibers/Graphene Oxide Fibers for Osmotic Energy Conversion. ACS Appl. Mater. Interfaces 2021, 13, 22416–22425. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.T.; Wang, X.; Min, B.; Park, S.I. TEMPO-Oxidized Cellulose Nanofibril Films Incorporating Graphene Oxide Nanofillers. Polymers 2023, 15, 2646. [Google Scholar] [CrossRef]
- Verma, Y.K.; Singh, A.K.; Paswan, M.; Gurmaita, P.K. Preparation and characterization of bamboo based nanocellulose by ball milling and used as a filler for preparation of nanocomposite. Polymer 2024, 308, 127396. [Google Scholar] [CrossRef]
- Mahmud, M.M.; Perveen, A.; Jahan, R.A.; Matin, M.A.; Wong, S.Y.; Li, X.; Arafat, M.T. Preparation of different polymorphs of cellulose from different acid hydrolysis medium. Int. J. Biol. Macromol. 2019, 130, 969–976. [Google Scholar] [CrossRef]
- Yang, T.; Li, X.; Guo, Y.; Zhao, J.; Qu, Y. Preparation of nanocellulose crystal from bleached pulp with an engineering cellulase and co-production of ethanol. Carbohydr. Polym. 2023, 301, 120291. [Google Scholar] [CrossRef]
- Rana, A.K.; Scarpa, F.; Thakur, V.K. Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications. Ind. Crop. Prod. 2022, 187, 115356. [Google Scholar] [CrossRef]
- Muller, D.; Silva, J.; Rambo, C.; Barra, G.; Dourado, F.; Gama, F. Neuronal cells’ behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds. J. Biomater. Sci. Polym. Ed. 2013, 24, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Jo, Y.K.; Cha, M.; Cha, Y.J.; Yoon, D.K.; Sanandiya, N.D.; Prajatelistia, E.; Oh, D.X.; Hwang, D.S. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity. Polymers 2016, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, Z.; Chen, B.; Zhang, W.; Sharma, S.; Gu, W.; Deng, Y. Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J. Power Sources 2014, 246, 283–289. [Google Scholar] [CrossRef]
- Theivasanthi, T.; Anne Christma, F.; Toyin, A.J.; Gopinath, S.C.; Ravichandran, R. Synthesis and characterization of cotton fiber-based nanocellulose. Int. J. Biol. Macromol. 2018, 109, 832–836. [Google Scholar] [CrossRef]
- Munawar, R.F.; Saad, A.F.; Othman, I.S.; Abid, M.A.A.M.; Samat, K.F. Characterization of Nanocellulose from Orange Peel Waste. J. Adv. Res. Appl. Mech. 2024, 112, 10–20. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, C.L.; Chen, X.D.; Wang, M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in-situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 233, 109913. [Google Scholar] [CrossRef]
- Dias, O.A.T.; Konar, S.; Leão, A.L.; Sain, M. Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydr. Polym. 2019, 220, 79–85. [Google Scholar] [CrossRef]
- Kim, H.J.; Kwon, H.J.; Jeon, S.; Park, J.W.; Sunthornvarabhas, J.; Sriroth, K. Electrical and Optical Properties of Nanocellulose Films and Its Nanocomposites. In Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume C: Polymer Nanocomposites of Cellulose Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2015; pp. 395–432. [Google Scholar] [CrossRef]
- Hsu, H.H.; Zhong, W. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review. Membranes 2019, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Liu, W.; Li, W.; Duan, Y.; Zhou, K.; Zhang, S.; Ni, S.; Xu, T.; Du, H.; Si, C. Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 1078–1089. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Kim, C.; Nogi, M.; Suganuma, K. Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale 2013, 5, 9289–9295. [Google Scholar] [CrossRef]
- Pras, O.; Beneventi, D.; Chaussy, D.; Piette, P.; Tapin-Lingua, S. Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. J. Mater. Sci. 2013, 48, 6911–6920. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, G.; Yao, J.; Liu, N.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z.; Fan, S.; Bloking, J.T.; et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513–518. [Google Scholar] [CrossRef]
- Kuzmenko, V.; Saleem, A.M.; Bhaskar, A.; Staaf, H.; Desmaris, V.; Enoksson, P. Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage. J. Phys. Conf. Ser. 2015, 660, 012062. [Google Scholar] [CrossRef]
- Wu, X.; Lu, C.; Zhang, X.; Zhou, Z. Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: Tailored hierarchical structure leading to synergistic property enhancements. J. Mater. Chem. A 2015, 3, 13317–13323. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Liu, T.; Huang, R.; Chai, S.; Chen, F.; Fu, Q. Completely Green Approach for the Preparation of Strong and Highly Conductive Graphene Composite Film by Using Nanocellulose as Dispersing Agent and Mechanical Compression. ACS Sustain. Chem. Eng. 2017, 5, 9102–9113. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Zhang, Z.; Qin, Y.; Shui, X.; Xia, J.; Xiong, S.; Wang, B.; Zhang, Z.; Wei, X.; et al. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure. J. Mater. Chem. A 2022, 10, 9922–9931. [Google Scholar] [CrossRef]
- González-Gil, R.M.; Borràs, M.; Chbani, A.; Abitbol, T.; Fall, A.; Aulin, C.; Aucher, C.; Martínez-Crespiera, S. Sustainable and Printable Nanocellulose-Based Ionogels as Gel Polymer Electrolytes for Supercapacitors. Nanomaterials 2022, 12, 273. [Google Scholar] [CrossRef]
- Kowalczuk, J.; Bielejewski, M.; Tritt-Goc, J. Ionic liquid dynamics and electrical conductivity under confinement within micro and nanocellulose ionogels. Cellulose 2023, 30, 3551–3567. [Google Scholar] [CrossRef]
- Nguyen, D.T.A.; Wang, L.; Imae, T.; Su, C.J.; Jeng, U.S.; Rojas, O.J. Nanoarchitectonics of Nanocellulose Filament Electrodes by Femtosecond Pulse Laser Deposition of ZnO and In Situ Conjugation of Conductive Polymers. ACS Appl. Mater. Interfaces 2024, 16, 22532–22546. [Google Scholar] [CrossRef]
- Gutierrez, J.; Tercjak, A.; Algar, I.; Retegi, A.; Mondragon, I. Conductive properties of TiO2/bacterial cellulose hybrid fibres. J. Colloid Interface Sci. 2012, 377, 88–93. [Google Scholar] [CrossRef]
- Shityakov, S.; Roewer, N.; Förster, C.; Broscheit, J.A. In Silico Modeling of Indigo and Tyrian Purple Single-Electron Nano-Transistors Using Density Functional Theory Approach. Nanoscale Res. Lett. 2017, 12, 439. [Google Scholar] [CrossRef] [PubMed]
- Surya, S.G.; Raval, H.N.; Ahmad, R.; Sonar, P.; Salama, K.N.; Rao, V. Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review. TrAC Trends Anal. Chem. 2019, 111, 27–36. [Google Scholar] [CrossRef]
- Kurth, S.; Voigt, S.; Zichner, R.; Roscher, F.; Weigel, P.; Großmann, T. Technologies for biodegradable wireless plant monitoring sensors. In Proceedings of the 2021 Smart Systems Integration (SSI), Grenoble, France, 27–29 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wolf, C.; Glaser, J.; Kepler, J. Yosys-a free Verilog synthesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), Linz, Austria, 10 October 2013; Volume 97. [Google Scholar]
- Grass, R.N.; Heckel, R.; Puddu, M.; Paunescu, D.; Stark, W.J. Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes. Angew. Chem. Int. Ed. 2015, 54, 2552–2555. [Google Scholar] [CrossRef]
- Islam, S.; Peart, C.; Kehlmaier, C.; Sun, Y.H.; Lei, F.; Dahl, A.; Klemroth, S.; Alexopoulou, D.; del Mar Delgado, M.; Laiolo, P.; et al. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol. Phylogenetics Evol. 2024, 198, 108135. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Lynch, E.M.; Akkineni, S.; Watson, J.L.; Decarreau, J.; Bethel, N.P.; Benna, I.; Sheffler, W.; Farrell, D.; DiMaio, F.; et al. De novo design of pH-responsive self-assembling helical protein filaments. Nat. Nanotechnol. 2024, 19, 1016–1021. [Google Scholar] [CrossRef]
- Salihoglu, R.; Srivastava, M.; Liang, C.; Schilling, K.; Szalay, A.; Bencurova, E.; Dandekar, T. PRO-Simat: Protein network simulation and design tool. Comput. Struct. Biotechnol. J. 2023, 21, 2767–2779. [Google Scholar] [CrossRef]
- Xie, J.; Jia, D.; Dirican, M.; Xia, Y.; Li, C.; Liu, Y.; Cui, M.; Yan, C.; Wan, J.; Liu, H.; et al. Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays. ACS Appl. Mater. Interfaces 2022, 14, 16658–16668. [Google Scholar] [CrossRef] [PubMed]
- Andersson Ersman, P.; Freitag, K.; Nilsson, M.; Åhlin, J.; Brooke, R.; Nordgren, N.; Aulin, C.; Fall, A.; Nevo, Y.; Beni, V. Electrochromic Displays Screen Printed on Transparent Nanocellulose-Based Substrates. Adv. Photonics Res. 2023, 4, 2200012. [Google Scholar] [CrossRef]
- Ko, Y.; Kwon, G.; Choi, H.; Lee, K.; Jeon, Y.; Lee, S.; Kim, J.; You, J. Cutting Edge Use of Conductive Patterns in Nanocellulose-Based Green Electronics. Adv. Funct. Mater. 2023, 33, 2302785. [Google Scholar] [CrossRef]
- Lichtenstein, K.; Lavoine, N. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polym. Degrad. Stab. 2017, 146, 53–60. [Google Scholar] [CrossRef]
- Barajas-Ledesma, R.M.; Patti, A.F.; Wong, V.N.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose superabsorbent structure by controlling the drying rate. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124943. [Google Scholar] [CrossRef]
- Lindström, T. A Proposition for the Estimation of the Maximum Tensile Strength of Variously Charged Nanocellulosic Film Materials Provided by Vacuum Filtration. Nanomaterials 2021, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.S.; Suganda, W.; Östmark, E.; Brolin, A.; Wågberg, L. Dewatering of Micro- and Nanofibrillated Cellulose for Membrane Production. ACS Sustain. Chem. Eng. 2023, 11, 16428–16441. [Google Scholar] [CrossRef]
- Beck, S.; Bouchard, J.; Berry, R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 2012, 13, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Esparza, Y.; Ngo, T.D.; Fraschini, C.; Boluk, Y. Aggregate morphology and aqueous dispersibility of spray-dried powders of cellulose nanocrystals. Ind. Eng. Chem. Res. 2019, 58, 19926–19936. [Google Scholar] [CrossRef]
- Peng, Y.; Gardner, D.J.; Han, Y. Drying cellulose nanofibrils: In search of a suitable method. Cellulose 2012, 19, 91–102. [Google Scholar] [CrossRef]
- Hanif, Z.; Jeon, H.; Tran, T.H.; Jegal, J.; Park, S.A.; Kim, S.M.; Park, J.; Hwang, S.Y.; Oh, D.X. Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion. J. Polym. Res. 2018, 25, 191. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Assembling and redispersibility of rice straw nanocellulose: Effect of tert-butanol. ACS Appl. Mater. Interfaces 2014, 6, 20075–20084. [Google Scholar] [CrossRef]
- Velásquez-Cock, J.; Posada, P.; Castro, C.; Gañán, P.; Zuluaga, R.; Gómez, H.B.E.; Serpa, G.A.; Gómez, H.C. Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils. Carbohydr. Polym. 2018, 179, 118–125. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.Y.; Wong, H.S.P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530. [Google Scholar] [CrossRef]
- Xia, F.; Xia, T.; Xiang, L.; Ding, S.; Li, S.; Yin, Y.; Xi, M.; Jin, C.; Liang, X.; Hu, Y. Carbon Nanotube-Based Flexible Ferroelectric Synaptic Transistors for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2022, 14, 30124–30132. [Google Scholar] [CrossRef] [PubMed]
Recent Research Regarding Organic and Cellulose-Based Transistors and Circuits | ||||||
---|---|---|---|---|---|---|
Year | Reference | Transistor | Inverter | Logic Gates | PDK | Cell Library |
2024 | [39] | P & N-OFET | Yes | Yes | ||
[40] | P-OFET | Yes | Yes | Yes | Yes | |
2023 | [54] | P-OFET | Yes | Yes | ||
[41] | P-OFET | |||||
[42] | P-OFET | |||||
[43] | N-OFET | |||||
2022 | [48] | N-OFET | ||||
[47] | P-OFET | Yes | ||||
2021 | [49] | N-OFET | ||||
[55] | P- & N-OFET | Yes | ||||
2020 | [51] | P-OFET | Yes | Yes | Yes | Yes |
2019 | [56] | P- & N-OFET | Yes | Yes | ||
2018 | [52] | P- & N-OFET | Yes | |||
2016 | [53] | P-OFET | ||||
2014 | [37] | P & N-OFET |
Advantages | Disadvantages | ||
---|---|---|---|
Advantage | Comment | Problem | Possible Solutions |
Ideal host and composite material | Can be easily obtained from sustainable material (bacteria, food, organic agricultural waste, wood, plants, etc.) | Challenging to obtain an exact shape | Cutting with LASER and 3D printing, with bacterial nanocellulose growing in the moulds |
Easy to manufacture for special features | Conductivity, optical transparency, stiffness, and flexibility | Fibre stability and thermal degradation at high temperatures | Application only in mid-temperature devices (under 250 °C) |
Broad applications in chip technology | Various phases of the final product (aerogel, gel, never-dried membrane, solid membrane, and hard material) | Low conductivity | Treatment with iodine, graphene, or nanometal particles |
Various design possibilities | E.g., origami and kirigami design [46] | High price (processing and fabrication) | Automation of the manufacturing process |
Scalability | Material can be easily scaled-up in an environmentally sustainable way | Biodegradability can be too high | Treatment of the nanocellulose with anti-microbial components |
Biodegradability | Easy to degrade and compost and very environmentally friendly | Compatibility with other materials | Due to the hydrophilic nature of nanocellulose, it is incompatible with hydrophobic materials such as petroleum-based products. The proper polymer has to be used or nanocellulose has to be treated to alter the hydrophilic surface prior to linking with hydrophobic material. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencurova, E.; Chinazzo, A.; Kar, B.; Jung, M.; Dandekar, T. How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey. Nanomaterials 2024, 14, 1536. https://doi.org/10.3390/nano14181536
Bencurova E, Chinazzo A, Kar B, Jung M, Dandekar T. How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey. Nanomaterials. 2024; 14(18):1536. https://doi.org/10.3390/nano14181536
Chicago/Turabian StyleBencurova, Elena, André Chinazzo, Bipasa Kar, Matthias Jung, and Thomas Dandekar. 2024. "How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey" Nanomaterials 14, no. 18: 1536. https://doi.org/10.3390/nano14181536
APA StyleBencurova, E., Chinazzo, A., Kar, B., Jung, M., & Dandekar, T. (2024). How Far Is the Nanocellulose Chip and Its Production in Reach? A Literature Survey. Nanomaterials, 14(18), 1536. https://doi.org/10.3390/nano14181536