Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Paperation of SERS Substrates
2.3. Instruments
3. Results and Discussion
3.1. Characterization of AAO Base
3.2. Characterization and Raman Signal of SERS Substrates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serebrennikova, K.V.; Berlina, A.N.; Sotnikov, D.V.; Zherdev, A.V.; Dzantiev, B.B. Raman scattering-based biosensing: New prospects and opportunities. Biosensors 2021, 11, 512. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Itoh, T.; Procházka, M.; Dong, Z.C.; Ji, W.; Yamamoto, Y.S.; Zhang, Y.; Ozaki, Y. Toward a new era of SERS and TERS at the nanometer scale: From fundamentals to innovative applications. Chem. Rev. 2023, 123, 1552–1634. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.I.; Itoh, T.; Tamaru, H.; Biju, V.; Ishikawa, M.; Ozaki, Y. Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys. Rev. B 2010, 81, 115406. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Deng, J.; Zhou, J.; Jia, X.; Wang, G.; Luo, F. The advanced applications of 2D materials in SERS. Chemosensors 2022, 10, 455. [Google Scholar] [CrossRef]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef]
- Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755–6759. [Google Scholar] [CrossRef]
- Wrigglesworth, E.G.; Johnston, J.H. Mie theory and the dichroic effect for spherical gold nanoparticles: An experimental approach. Nanoscale Adv. 2021, 3, 3530–3536. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, J.; Zhang, X.; Su, S.; Luo, J.; Li, J.; Li, X. A Multi-stage Deep Learning Network for Trace Explosive Residues Detection in SERS Chips. IEEE Sens. J. 2023, 23, 31493–31505. [Google Scholar] [CrossRef]
- Chen, H.; Park, S.G.; Choi, N.; Kwon, H.J.; Kang, T.; Lee, M.K.; Choo, J. Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sens. 2021, 6, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Soni, R.K.; Nguyen, D.D.; Gupta, V.K.; Nguyen-Tri, P. Enhanced photocatalytic and SERS performance of Ag nanoparticles functionalized MoS2 nanoflakes. Chemosphere 2023, 339, 139735. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Singh, J.; Soni, R.; Singh, J.P. MoS2–Ag nanocomposite-based SERS substrates with an ultralow detection limit. ACS Appl. Nano Mater. 2023, 6, 9236–9246. [Google Scholar] [CrossRef]
- Singh, J.; Soni, R.K. Tunable optical properties of Au nanoparticles encapsulated TiO2 spheres and their improved sunlight mediated photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126011. [Google Scholar] [CrossRef]
- O’sullivan, J.P.; Wood, G.C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1970, 317, 511–543. [Google Scholar]
- Ku, C.A.; Yu, C.Y.; Hung, C.W.; Chung, C.K. Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review. Nanomaterials 2023, 13, 2853. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Jung, J.; Sheppard, K.; Choi, C.H. Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening. Nanomaterials 2023, 13, 342. [Google Scholar] [CrossRef]
- Ruiz-Clavijo, A.; Caballero-Calero, O.; Martín-González, M. Revisiting anodic alumina templates: From fabrication to applications. Nanoscale 2021, 13, 2227–2265. [Google Scholar] [CrossRef] [PubMed]
- Sammi, H.; Nair, R.V.; Sardana, N. Recent advances in nanoporous AAO based SERS for surface-enhanced raman scattering. Mater. Today Proc. 2021, 41, 843–850. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; Yang, Y.; Yang, N.; Lu, S.; You, T.; Yin, P. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. J. Alloys Compd. 2021, 863, 158758. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, L.; Zou, S.; Zhang, H. Electrodeposition of Ag nanodendrites SERS substrates for detection of malachite green. Microchem. J. 2019, 150, 104127. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef] [PubMed]
- Rafailović, L.D.; Gammer, C.; Srajer, J.; Trišović, T.; Rahel, J.; Karnthaler, H.P. Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide. RSC Adv. 2016, 6, 33348–33352. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Lu, Y.; Zhao, B.; Hao, Y.W.; Liu, Y.Q. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate. Appl. Surf. Sci. 2016, 377, 167–173. [Google Scholar] [CrossRef]
- Cai, W.F.; Pu, K.B.; Ma, Q.; Wang, Y.H. Insight into the fabrication and perspective of dendritic Ag nanostructures. J. Exp. Nanosci. 2017, 12, 319–337. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Billat, L.V. Use of blood lactate measurements for prediction of exercise performance and for control of training: Recommendations for long-distance running. Sports Med. 1996, 22, 157–175. [Google Scholar] [CrossRef]
- Hsu, P.H.; Tsai, T.H.; Chiang, H.K. In Vivo blood lactic acid monitoring using microdialysis and surface-enhanced Raman spectroscopy. In Nanobiosystems: Processing, Characterization, and Applications; SPIE: San Diego, CA, USA, 2008; Volume 7040, pp. 139–146. [Google Scholar]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Kraut, J.A.; Madias, N.E. Lactic acidosis. N. Eng. J. Med. 2014, 371, 2309–2319. [Google Scholar] [CrossRef]
- Komkova, M.A.; Eliseev, A.A.; Poyarkov, A.A.; Daboss, E.V.; Evdokimov, P.V.; Eliseev, A.A.; Karyakin, A.A. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens. Bioelectron. 2022, 202, 113970. [Google Scholar] [CrossRef] [PubMed]
- Van Hoovels, K.; Xuan, X.; Cuartero, M.; Gijssel, M.; Swarén, M.; Crespo, G.A. Can wearable sweat lactate sensors contribute to sports physiology? ACS Sens. 2021, 6, 3496–3508. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ho, C.; Slappey, N.; Zhou, Z.; Snelgrove, S.E.; Brown, M.; Grabinski, A.; Guo, X.; Chen, Y.; Miller, K.; et al. A wearable conductivity sensor for wireless real-time sweat monitoring. Sens. Actuators B Chem. 2016, 227, 35–42. [Google Scholar] [CrossRef]
- Meakin, P. Progress in DLA research. Phys. D Nonlinear Phenom. 1995, 86, 104–112. [Google Scholar] [CrossRef]
- Sung, C.L.; Kao, T.T.; Lin, Y.C. Silver Dendrites Decorated AAO Membrane for SERS Sensing of Lactic Acid in Artificial Sweat. IEEE Sens. Lett. 2024, 8, 1501904. [Google Scholar] [CrossRef]
- Avramović, L.; Ivanović, E.R.; Maksimović, V.M.; Pavlović, M.M.; Vuković, M.; Stevanović, J.S.; Nikolić, N.D. Correlation between crystal structure and morphology of potentiostatically electrodeposited silver dendritic nanostructures. Trans. Nonferrous Met. Soc. China 2018, 28, 1903–1912. [Google Scholar] [CrossRef]
- Luo, D.; Yan, C.; Wang, T. Interparticle forces underlying nanoparticle self-assemblies. Small 2015, 11, 5984–6008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Ning, M.; Wang, P.; Wang, W.; Zhang, X.; Liu, Z.; Zhang, Y.; Li, S. Fast synthesis of Au nanoparticles on metal–phenolic network for sweat SERS analysis. Nanomaterials 2022, 12, 2977. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.H.K.; Hsu, P.H. Surface-enhanced Raman scattering (SERS) spectroscopy technique for lactic acid in serum measurement. In Plasmonics: Metallic Nanostructures and Their Optical Properties III; SPIE: Bellingham, WA, USA, 2005; Volume 5727, pp. 395–402. [Google Scholar]
- Hsu, P.H.; Chiang, H.K. Surface-enhanced Raman spectroscopy for quantitative measurement of lactic acid at physiological concentration in human serum. J. Raman Spectrosc. 2010, 41, 1610–1614. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, C.-L.; Kao, T.-T.; Lin, Y.-C. Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection. Nanomaterials 2024, 14, 1562. https://doi.org/10.3390/nano14191562
Sung C-L, Kao T-T, Lin Y-C. Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection. Nanomaterials. 2024; 14(19):1562. https://doi.org/10.3390/nano14191562
Chicago/Turabian StyleSung, Chia-Ling, Tzung-Ta Kao, and Yu-Cheng Lin. 2024. "Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection" Nanomaterials 14, no. 19: 1562. https://doi.org/10.3390/nano14191562
APA StyleSung, C. -L., Kao, T. -T., & Lin, Y. -C. (2024). Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection. Nanomaterials, 14(19), 1562. https://doi.org/10.3390/nano14191562