A Tuneable and Easy-to-Prepare SERS Substrate Based on Ag Nanorods: A Versatile Tool for Solution and Dry-State Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Silver Nanorods
2.2.1. Rekha AgNR
2.2.2. Volkan AgNR
2.2.3. Mahmoud AgNR
2.3. SERS Substrate Preparation
2.3.1. Functionalization of Glass Support
2.3.2. Drop Deposition of AgNR Colloids
2.4. SERS Analyses Using AgNR Substrates
2.5. Instrumentation
2.5.1. UV-Visible Spectroscopy
2.5.2. Scanning Electron Microscopy Coupled with Energy Dispersive X-Ray Analysis (SEM-EDX)
2.5.3. Portable Raman Microprobe
2.5.4. SSE™ Raman Spectrometer
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, F.; Leona, M. Surface-enhanced Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 2016, 47, 67–77. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Jeon, T.Y.; Kim, D.J.; Park, S.G.; Kim, S.H.; Kim, D.H. Nanostructured plasmonic substrates for use as SERS sensors. Nano Converg. 2016, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Longoni, M.; Bruni, S. Development of dry-state SERS substrates for the noninvasive detection of artistic dyes in textiles. Opt. Eng. 2021, 60, 127105. [Google Scholar] [CrossRef]
- Garcia-Leis, A.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Silver nanostars with high SERS performance. J. Phys. Chem. C 2013, 117, 7791–7795. [Google Scholar] [CrossRef]
- Shiohara, A.; Wang, Y.; Liz-Marzán, L.M. Recent approaches toward creation of hot spots for SERS detection. In Colloidal Synthesis of Plasmonic Nanometals, 1st ed.; Liz-Marzán, L., Ed.; Jenny Stanford Publishing: New York, NY, USA, 2020; pp. 563–622. [Google Scholar] [CrossRef]
- Wang, Y.; Camargo, P.H.; Skrabalak, S.E.; Gu, H.; Xia, Y. A facile, water-based synthesis of highly branched nanostructures of silver. Langmuir 2008, 24, 12042–12046. [Google Scholar] [CrossRef] [PubMed]
- Rekha, C.R.; Nayar, V.U.; Gopchandran, K.G. Synthesis of highly stable silver nanorods and their application as SERS substrates. J. Sci. Adv. Mater. Devices 2018, 3, 196–205. [Google Scholar] [CrossRef]
- Sancı, R.; Volkan, M. Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates. Sens. Actuators B-Chem. 2009, 139, 150–155. [Google Scholar] [CrossRef]
- Zhao, Y.; Kumar, A.; Yang, Y. Unveiling practical considerations for reliable and standardized SERS measurements: Lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem. Soc. Rev. 2024, 53, 1004–1057. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Ma, L.; Li, J.; Liu, Y.; Zhao, D.; Zhang, Z. Ag nanorods-based surface-enhanced Raman scattering: Synthesis, quantitative analysis strategies, and applications. Front. Chem. 2019, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.H.; Suh, J.S. Silver nanorods used to promote SERS as a quantitative analytical tool. J. Raman Spectrosc. 2010, 41, 624–627. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; El-Sayed, M.A.; Gao, J.; Landman, U. High-frequency mechanical stirring initiates anisotropic growth of seeds requisite for synthesis of asymmetric metallic nanoparticles like silver nanorods. Nano Lett. 2013, 13, 4739–4745. [Google Scholar] [CrossRef] [PubMed]
- Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. Sci. World J. 2015, 2015, 124582. [Google Scholar] [CrossRef] [PubMed]
- Lofrumento, C.; Platania, E.; Ricci, M.; Mulana, C.; Becucci, M.; Castellucci, E.M. The SERS spectra of alizarin and its ionized species: The contribution of the molecular resonance to the spectral enhancement. J. Mol. Struct. 2015, 1090, 98–106. [Google Scholar] [CrossRef]
- Cañamares, M.V.; Leona, M. Surface-enhanced Raman scattering study of the red dye laccaic acid. J. Raman Spectrosc. 2007, 38, 1259–1266. [Google Scholar] [CrossRef]
λexc | 532 nm | 785 nm | 850 nm (SSE™) |
---|---|---|---|
Alizarin | 343w, 418w, 477w, 581w, 632w, 659w, 680w, 827w, 897w, 1011w, 1042w, 158m, 1186m, 1285s, 1325s, 1459s, 1551w, 1591w, 1629m | 346s, 420m, 475s, 507m, 578w, 33m, 662m, 681m, 759w, 817w, 897w, 29w, 1010w, 1049m, 1158s, 183s, 1206m, 1290s, 322s, 1422s, 1458s, 1554s, 603m, 1628m | 240w, 343m, 396w, 414w, 476m, 507m, 583w, 633m, 661m, 681m, 817w, 899w, 930w, 1047m, 1158m, 1185m, 1205m, 1290s, 1321s, 1421s, 1453s, 1551s, 1604s, 1627s |
Purpurin | 318w, 368w, 421m,452m, 554w, 608w, 650m, 827w, 900w, 968m, 1064m, 1161m, 1288s, 1325s, 1435s, 1472s, 1586m, 1624m | 312m, 366w, 385w, 427m, 452m, 607w, 649m, 730w, 901w, 968m, 1027w, 1065m, 1099w, 1152m, 1209s, 1294s, 1319s, 1391s, 1470m, 1564w, 1698m | 235s, 335w, 357w, 429w, 477w, 524m, 561w, 607w, 649w, 811w, 931w, 969w, 1061w, 1153w, 1209m, 1289s, 1385w, 1445w, 1471w, 1496w, 1560w, 1604m |
Lac dye | 415w, 455w, 660w, 1013w, 1055w, 1097w, 1325s, 1461s, 1579w | 370w, 412w, 453m, 512w, 479w, 658w, 732w, 793w, 938w, 1012w, 1051m, 1099m, 1123w, 1186w, 1249s, 1463s | 253s, 366w, 413w, 451m, 512w, 585w, 657w, 759w, 937s, 1008m, 1045m, 1096m, 1195w, 1246m, 1458s, 1605m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longoni, M.; Zucca, S.; Bruni, S. A Tuneable and Easy-to-Prepare SERS Substrate Based on Ag Nanorods: A Versatile Tool for Solution and Dry-State Analyses. Nanomaterials 2024, 14, 1808. https://doi.org/10.3390/nano14221808
Longoni M, Zucca S, Bruni S. A Tuneable and Easy-to-Prepare SERS Substrate Based on Ag Nanorods: A Versatile Tool for Solution and Dry-State Analyses. Nanomaterials. 2024; 14(22):1808. https://doi.org/10.3390/nano14221808
Chicago/Turabian StyleLongoni, Margherita, Sofia Zucca, and Silvia Bruni. 2024. "A Tuneable and Easy-to-Prepare SERS Substrate Based on Ag Nanorods: A Versatile Tool for Solution and Dry-State Analyses" Nanomaterials 14, no. 22: 1808. https://doi.org/10.3390/nano14221808
APA StyleLongoni, M., Zucca, S., & Bruni, S. (2024). A Tuneable and Easy-to-Prepare SERS Substrate Based on Ag Nanorods: A Versatile Tool for Solution and Dry-State Analyses. Nanomaterials, 14(22), 1808. https://doi.org/10.3390/nano14221808