Exploring Pt-Impregnated CdS/TiO2 Heterostructures for CO2 Photoreduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CdS/TiO2 Photocatalysts
2.3. Synthesis of Pt/CdS/TiO2 Photocatalysts
2.4. Characterization Techniques
2.5. Catalytic Tests
3. Results and Discussion
3.1. Characterization Results
3.2. Photocatalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Humphries, J.; Schneider, B. Spinning the Industrial Revolution. Econ. Hist. Rev. 2019, 72, 126–155. [Google Scholar] [CrossRef]
- Wang, W.-N.; Soulis, J.; Yang, Y.J.; Biswas, P. Comparison of CO2 Photoreduction Systems: A Review. Aerosol Air Qual. Res. 2014, 14, 533–549. [Google Scholar] [CrossRef]
- Jie, L.; Gao, X.; Cao, X.; Wu, S.; Long, X.; Ma, Q.; Su, J. A Review of CdS Photocatalytic Nanomaterials: Morphology, Synthesis Methods, and Applications. Mater. Sci. Semicond. Process. 2024, 176, 108288. [Google Scholar] [CrossRef]
- Patra, B.R.; Gouda, S.P.; Pattnaik, F.; Nanda, S.; Dalai, A.K.; Naik, S. A Brief Overview of Recent Advancements in CO2 Capture and Valorization Technologies. In Carbon Dioxide Capture and Conversion: Advanced Materials and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–16. [Google Scholar]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget. Earth Syst. Sci. 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Newsome, T.M.; Law, B.E.; Marques, L.; Lenton, T.M.; Xu, C.; Huq, S.; et al. The 2023 state of the climate report: Entering uncharted territory. Bioscience 2023, 73, 841–850. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Behera, A.; Kumar Kar, A.; Seivastava, R. Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: A review. Mater. Horiz. 2022, 9, 607–639. [Google Scholar] [CrossRef]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef]
- Gao, J.; Choo Sze Shiong, S.; Liu, Y. Reduction of CO2 to Chemicals and Fuels: Thermocatalysis versus Electrocatalysis. J. Chem. Eng. 2023, 472, 145033. [Google Scholar] [CrossRef]
- Wiranarongkorn, K.; Eamsiri, K.; Chen, Y.S.; Arpornwichanop, A. A Comprehensive Review of Electrochemical Reduction of CO2 to Methanol: Technical and Design Aspects. J. CO2 Util. 2023, 71, 102477. [Google Scholar] [CrossRef]
- Photosynthesis: Potential and Reality. In Artificial; Comisión Europea, Directorio General de Investigación e Innovación: Madrid, Spain, 2016.
- Barrios, C.E.; Albiter, E.; Zanella, R. La Fotosíntesis Artificial, una Alternativa para la Producción de Combustibles. Mundo Nano 2015, 8, 6–21. [Google Scholar] [CrossRef]
- Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011, 332, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Ciamician, G. The Photochemistry of the Future. Sciencie 1912, 36, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Kathpalia, R.; Kamra Verma, A. Artificial Photosynthesis an Alternative Source of Renewable Energy: Potential and Limitations. In Plant Physiology—Annual Volume 2023; IntechOpen: London, UK, 2023. [Google Scholar]
- Socorro, A.; Cristobal, R. Fotosíntesis Artificial. Comparación con el Mecanismo Natural. Rev. Cub. Fis. 2013, 30, 9–13. [Google Scholar]
- Velasco, L.F.; Ania, C.O. Materiales de Carbono en Fotocatálisis; Grupo Español del Carbón: Zaragoza, Spain, 2011; pp. 2–6. [Google Scholar]
- Fernandez-Catalá, J. Catalizadores Micro- y Nanoestructurados para la Oxidación de Hidrocarburos y Producción de Hidrógeno. Ph.D. Thesis, Universidad de Alicante, Alicante, Spain, 2020. [Google Scholar]
- Ohtani, B.; Prieto-Mahaney, O.O.; Li, D.; Abe, R. What Is Degussa (Evonic) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test. J. Photochem. Photobiol. A 2010, 216, 179–182. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.S.H.; Niu, R.; Xu, L.; Lu, Y.; Cao, J.; Lee, S. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules 2016, 21, 56. [Google Scholar] [CrossRef]
- Su, T.; Qin, Z.; Ji, H.; Wu, Z. An Overview of Photocatalysis Facilitated by 2D Heterojunctions. Nanotechnology 2019, 30, 502002. [Google Scholar] [CrossRef]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. 2D/2D Heterojunction of Ti3C2/g-C3N4 Nanosheets for Enhanced Photocatalytic Hydrogen Evolution. Nanoscale 2019, 11, 8138–8149. [Google Scholar] [CrossRef]
- Xu, H.; Liao, J.; Yuan, S.; Zhao, Y.; Zhang, M.; Wang, Z.; Shi, L. Tuning the Morphology, Stability and Photocatalytic Activity of TiO2 Nanocrystal Colloids by Tungsten Doping. Mater. Res. Bull. 2014, 51, 326–331. [Google Scholar] [CrossRef]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Cano-Casanova, L.; Lillo-Ródenas, M.Á.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. Synthesis of TiO2 with Hierarchical Porosity for the Photooxidation of Propene. Molecules 2017, 22, 2243. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Li, Y.; Kuai, L.; Zhou, Y.; Xu, Q.; Li, H.; Wang, X.; Xiao, M.; Zou, Z. Construction of Unique Two-Dimensional MoS2-TiO2 Hybrid Nanojunctions: MoS2 as a Promising Cost-Effective Cocatalyst toward Improved Photocatalytic Reduction of CO2 to Methanol. Nanoscale 2017, 9, 9065–9070. [Google Scholar] [CrossRef] [PubMed]
- Deligoz, E.; Colakoglu, K.; Ciftci, Y. Elastic, electronic and lattice dynamical properties of CdS, CdSe and CdTe. Phys. B 2006, 373, 124–130. [Google Scholar] [CrossRef]
- Sarker, J.C.; Hogarth, G. Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chem. Rev. 2021, 121, 6057–6123. [Google Scholar] [CrossRef]
- Khan, N.; Sapi, A.; Arora, I.; Sagadevan, S.; Chandra, A.; Garg, S. Photocatalytic CO2 Reduction Using Metal and Nonmetal Doped TiO2 and Its Mechanism. React. Kinet. Mech. Cat. 2024, 137, 629–655. [Google Scholar] [CrossRef]
- Kim, G.J.; Kwon, D.W.; Hong, S.C. Effect of Pt Particle Size and Valence State on the Performance of Pt/TiO2 Catalysts for CO Oxidation at Room Temperature. J. Phys. Chem. C 2016, 120, 17996–18004. [Google Scholar] [CrossRef]
- Wei, Y.; Jiao, J.; Zhao, Z.; Zhong, W.; Li, J.; Liu, J.; Jiang, G.; Duan, A. 3D ordered macroporous TiO2-supported Pt@CdS core–shell nanoparticles: Design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J. Mater. Chem. A. 2015, 3, 11074–11085. [Google Scholar] [CrossRef]
- Benedetti, J.E.; Bernardo, D.R.; Morais, A.; Bettini, J.; Nogueira, A.F. Synthesis and characterization of a quaternary nanocomposite based on TiO2/CdS/rGO/Pt and its application in the photoreduction of CO2 to methane under visible light. RSC Adv. 2015, 5, 33914–33922. [Google Scholar] [CrossRef]
- Liu, P.; Men, Y.L.; Meng, X.Y.; Peng, C.; Zhao, Y.; Pan, Y.X. Electronic Interactions on Platinum/(Metal-Oxide)-BasedPhotocatalysts Boost Selective Photoreduction of CO2 to CH4. Angew. Chem. Int. Ed. 2023, 62, e202309443. [Google Scholar] [CrossRef]
- Park, H.; Ou, H.H.; Kang, U.; Choi, J.; Hoffmann, M.R. Photocatalytic conversion of carbon dioxide to methane on TiO2/CdS in aqueous isopropanol solution. Catal. Today 2016, 266, 153–159. [Google Scholar] [CrossRef]
- Botella, R.; Cao, W.; Celis, J.; Catalá-Fernández, J.; Greco, R.; Pankratova, V.; Temerov, F. Activating two-dimensional semiconductors for photocatalysis: A cross-dimensional strategy. J. Phys. Condens. Matter 2024, 36, 141501. [Google Scholar] [CrossRef] [PubMed]
- Fornasiero, P.; Melchionna, M. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10, 5493–5501. [Google Scholar]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8, 2253–2276. [Google Scholar] [CrossRef]
- Yu, S.-H.; Yang, J.; Han, Z.-H.; Zhou, Y.; Yang, R.-Y.; Qian, Y.-T.; Zhanga, Y.-H. Controllable Synthesis of Nanocrystalline CdS with Different Morphologies and Particle Sizes by a Novel Solvothermal Process. J. Mater. Chem. 1999, 6, 1283–1287. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Qian, H.; Li, Z.; Chen, J. Coating Colloidal Carbon Spheres with CdS Nanoparticles: Microwave Assisted Synthesis and Enhanced Photocatalytic Activity. Langmuir 2010, 26, 18570–18575. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Navlani-García, M.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. Exploring CuxO-Doped TiO2 Modified with Carbon Nanotubes for CO2 Photoreduction in a 2D-Flow Reactor. J. CO2 Util. 2021, 54, 101796. [Google Scholar] [CrossRef]
- Santos, V.P.; Carabineiro, S.A.C.; Tavares, P.B.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. Oxidation of CO, Ethanol and Toluene over TiO2 Supported Noble Metal Catalysts. Appl. Catal. B-Environ. 2010, 99, 198–205. [Google Scholar] [CrossRef]
- HighScore XRD Analysis Software. Available online: https://www.malvernpanalytical.com/en/products/category/software/x-ray-diffraction-software/highscore (accessed on 2 June 2024).
- Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray Diffraction Crystallography; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- ImageJ. Available online: https://imagej.net/ij/ (accessed on 2 June 2024).
- Ibanez, J.G.; Solorza, O.; Gomez-del-Campo, E. Preparation of Semiconducting Materials in the Laboratory: Production of CdS Thin Films and Estimation of Their Band Gap Energy. J. Chem. Educ. 1986, 63, 872–875. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Avantage. Available online: https://www.thermofisher.com/order/catalog/product/es/es/IQLAADGACKFAKRMAVI (accessed on 4 November 2024).
- Gao, Y.; Kong, D.; Han, J.; Zhou, W.; Gao, Y.; Wang, T.; Lu, G. Cadmium Sulfide In-Situ Derived Heterostructure Hybrids with Tunable Component Ratio for Highly Sensitive and Selective Detection of Ppb-Level H2S. J. Colloid Interface Sci. 2022, 627, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, G.; Zhang, Z.; Xin, X. Synthesis of Monodisperse CdS Nanospheres in an Inverse Microemulsion System Formed with a Dendritic Polyether Copolymer. Eur. J. Inorg. Chem. 2006, 1, 109–114. [Google Scholar] [CrossRef]
- Collado, L. Fotosíntesis Artificial: Influencia de La Química Superficial y los Procesos Optoelectrónicos en la Reducción Fotocatalítica de CO2. Ph.D. Thesis, Universidad Rey Juan Carlos, Madrid, Spain, 2015. [Google Scholar]
- Dou, S.; Wang, D.; Shang, Q.; Kong, X.; Fang, Y. Carbon Dots Modified Dendritic TiO2-CdS Heterojunction for Enhanced Photodegradation of Rhodamine and Hydrogen Evolution. Diam. Relat. Mater. 2023, 137, 110115. [Google Scholar] [CrossRef]
- Ahmadi, E.; Yashima, Y.; Suzuki, R.O.; Rezan, S.A. Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas. Metall. Mater. Trans. B 2018, 49, 1808–1821. [Google Scholar] [CrossRef]
- Fantauzzi, M.; Elsener, B.; Atzei, D.; Rigoldi, A.; Rossi, A. Exploiting XPS for the Identification of Sulfides and Polysulfides. RSC Adv. 2015, 5, 75953–75963. [Google Scholar] [CrossRef]
- Liao, S.; Wei, X.; Zhao, X.; Chen, L.; Xi, B. Lattice-Matched Controllable Construction of Nanometer Scale CdS/TiO2 Hollow Nanoboxes Z-Scheme Heterojunctions Based on Micrometer and Sub-Nanometer CdS for Comparison of Visible Photocatalytic Activity. J. Alloys Compd. 2023, 968, 172061. [Google Scholar] [CrossRef]
- Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W. Size-Dependent Interaction of the Poly(N-vinyl-2-pyrrolidone) Capping Ligand with Pd Nanocrystals. Langmuir 2012, 28, 6736–6741. [Google Scholar] [CrossRef]
- Wei, H.H.Y.; Evans, C.M.; Swartz, B.D.; Neukirch, A.J.; Young, J.; Prezhdo, O.V.; Krauss, T.D. Colloidal Semiconductor Quantum Dots with Tunable Surface Composition. Nano Lett. 2012, 12, 4465–4471. [Google Scholar] [CrossRef]
- Ning, X.; Lu, G. Photocorrosion Inhibition of CdS-Based Catalysts for Photocatalytic Overall Water Splitting. Nanoscale 2020, 12, 1213–1223. [Google Scholar] [CrossRef]
- De Moraes, C.L. Nanopartículas de Oro y Platino Estabilizadas Por Tionas N-Heterocíclicas y Aplicaciones Catalíticas. Ph.D. Thesis, Universidad de Sevilla, Seville, Spain, 2018. [Google Scholar]
- He, Y.; Huang, D. Single-Atom Platinum Catalyst for Efficient CO2 Conversion via Reverse Water Gas Shift Reaction. Molecules 2023, 28, 6630. [Google Scholar] [CrossRef]
- Cullen, C.P.; Coileáin, C.Ó.; McManus, J.B.; Hartwig, O.; McCloskey, D.; Duesberg, G.S.; McEvoy, N. Synthesis and Characterisation of Thin-Film Platinum Disulfide and Platinum Sulfide. Nanoscale 2021, 13, 7403–7411. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, F.; Baranyai, J.; Schmidt, T.; Cottre, T.; Kaiser, B.; Jaegermann, W.; Schäfer, R. From Bulk to Atoms: The Influence of Particle and Cluster Size on the Hydrogen Evolution Reaction. Z. Fur Phys. Chem. 2020, 234, 847–865. [Google Scholar] [CrossRef]
- Maheu, C.; Cardenas, L.; Puzenat, E.; Afanasiev, P.; Geantet, C. UPS and UV Spectroscopies Combined to Position the Energy Levels of TiO2 Anatase and Rutile Nanopowders. Phys. Chem. Chem. Phys. 2018, 20, 25629–25637. [Google Scholar] [CrossRef] [PubMed]
- Dimitriev, O.; Fahlman, M.; Braun, S. Energy Level Alignment at the Interface of Cadmium Sulphide Single Crystal and Phthalocyanines: The Role of the Crystal Surface States. Mater. Chem. Phys. 2018, 205, 102–112. [Google Scholar] [CrossRef]
- Low, J.; Dai, B.; Tong, T.; Jiang, C.; Yu, J. In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO2/CdS Composite Film Photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Photocatalytic Reduction of CO2 for Fuel Production: Possibilities and Challenges. J. Catal. 2013, 308, 168–175. [Google Scholar] [CrossRef]
- Palloti, D.K.; Passoni, L.; Maddalena, P.; Di Fonzo, F.; Lettieri, S. Photoluminiscence Mechanisms in Anatase and Rutile TiO2. J. Phys. Chem. C 2018, 121, 9011–9021. [Google Scholar] [CrossRef]
- Nakajima, H.; Mori, T. Influence of platinum loading on photoluminescence of TiO2 powder. J. Appl. Phys. 2004, 98, 925–927. [Google Scholar] [CrossRef]
- Mori, T.; Nakajima, H. Photluminescence of Pt-loaded TiO2 powder. Phys. B 2006, 376–377, 820–822. [Google Scholar]
- Banizi, Z.T.; Seifi, M.; Askari, M.B.; Dehaghi, S.B.; Ramezan zadeh, M.H. Photoluminescence and photocatalytic studies of cadmium sulfide/multiwall carbon nanotube (CdS/MWCNT) nanocomposites. Optik 2017, 158, 882–892. [Google Scholar] [CrossRef]
- Chávez-Caiza, J.; Fernández-Catalá, J.; Navlani-García, M.; Lousada, C.M.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. Unveiling the effect of sacrificial agent amount in the CO2 photoreduction performed in a flow reactor. J. CO2 Util. 2024, 83, 102818. [Google Scholar] [CrossRef]
- Beigi, A.A.; Fatemi, S.; Salehi, Z. Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation. J. CO2 Util. 2014, 7, 23–29. [Google Scholar] [CrossRef]
- Tasbihi, M.; Fresno, F.; Simon, U.; Villar-García, I.J.; Pérez-Dieste, V.; Escudero, C. On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica. Appl. Catal. B-Environ. 2018, 239, 68–76. [Google Scholar] [CrossRef]
- Xiong, Z.; Lei, Z.; Chen, X.; Gong, B.; Zhao, Y.; Zhang, J.; Zheng, C.; Wu, J.C. CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: Effect of deposition method and Pt precursors. Catal. Commun. 2017, 96, 1–5. [Google Scholar] [CrossRef]
- Wang, C.; Thompson, R.L.; Baltrus, J.; Matranga, C. Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. J. Phys. Chem. Lett. 2010, 1, 48–53. [Google Scholar] [CrossRef]
- Thompson, W.A.; Perier, C.; Maroto-Valer, M.M. Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal. B Environ. 2018, 238, 136–146. [Google Scholar] [CrossRef]
Synthesis | Photocatalysts | % CdS/TiO2 | Cd(NO3)2·4H2O (g) | Na2S2O3 (g) | PVP10-100G (g) | TiO2 (g) |
---|---|---|---|---|---|---|
1 | CdS | 100/0 | 2.0927 | 2.1452 | 0.5538 | 0 |
2 | Cd(20)-Ti | 20/80 | 0.4185 | 0.4290 | 0.1108 | 0.8000 |
3 | Cd(10)-Ti | 10/90 | 0.2093 | 0.2145 | 0.0554 | 0.9000 |
4 | Cd(1)-Ti | 1/99 | 0.0209 | 0.0214 | 0.0055 | 0.9900 |
Synthesis | % CdS | Catalyst Without Pt | Catalyst with 1% Pt |
---|---|---|---|
1 | 100 | CdS | Pt/CdS |
2 | 20 | Cd(20)-Ti | Pt/Cd(20)-Ti |
3 | 10 | Cd(10)-Ti | Pt/Cd(10)-Ti |
4 | 1 | Cd(1)-Ti | Pt/Cd(1)-Ti |
5 | 0 | TiO2-P25 | Pt/P25 |
Shape | Material | Crystalline Phase | 2θ (Degrees) | Plane |
---|---|---|---|---|
CdS | Wurtzite [50] | 24.7, 26.6, 28.2, 36.8, 43.8, 48, 51, 52, 53, 55, 58.3 | (100) (002) (101) (102) (110) (103) (200) (112) (201) (004) (202) | |
Spharelite [51] | 26.6, 43.8, 52 | (111) (220) (311) | ||
TiO2 | Rutile [52] | 27.4, 36.1, 41.2, 44, 54 | (110) (101) (111) (210) (211) | |
Anatase [52] | 25.3, 37.8, 48, 54, 55.1 | (101) (004) (200) (105) (211) |
Material | Anatase % | Rutile % | TiO2 % | Wurtzite % | Spharelite % | CdS % |
---|---|---|---|---|---|---|
CdS | 0 | 0 | 0 | 85.1 | 14.9 | 100 |
Pt/CdS | 0 | 0 | 0 | 56.6 | 43.4 | 100 |
TiO2-P25 | 85 | 15 | 100 | 0 | 0 | 0 |
Pt/P25 | 84.5 | 15.5 | 100 | 0 | 0 | 0 |
Cd(1)-Ti | 82.3 | 17.1 | 99.4 | 0.3 | 0.3 | 0.6 |
Pt/Cd(1)-Ti | 81.1 | 18.7 | 99.8 | 0.1 | 0.1 | 0.2 |
Cd(10)-Ti | 74.8 | 15.2 | 90 | 9.8 | 0.2 | 10 |
Pt/Cd(10)-Ti | 80.9 | 15.1 | 96 | 3.3 | 0.7 | 4 |
Cd(20)-Ti | 67.6 | 14.3 | 81.9 | 16.8 | 1.3 | 18.1 |
Pt/Cd(20)-Ti | 72 | 14.9 | 87 | 12.3 | 0.7 | 13.1 |
Material | CdS Nanoparticle Size (nm) | P25 Nanoparticle Size (nm) |
---|---|---|
CdS | 68 | - |
Pt/CdS | 48 | - |
TiO2-P25 | - | 21 |
Pt/P25 | - | 23 |
Cd(1)-Ti | - | 23 |
Pt/Cd(1)-Ti | - | 23 |
Cd(10)-Ti | 107 | 23 |
Pt/Cd(10)-Ti | 59 | 23 |
Cd(20)-Ti | 52 | 20 |
Pt/Cd(20)-Ti | 20 | 23 |
Material | Pt % |
---|---|
Pt/CdS | 1.02 |
Pt/Cd(20)-Ti | 0.97 |
Pt/Cd(10)-Ti | 0.60 |
Pt/Cd(1)-Ti | 0.61 |
Pt/P25 | 0.67 |
Element | Line | Mass % | Atom % |
---|---|---|---|
C | K | 15.24 ± 0.02 | 29.99 ± 0.04 |
O | K | 31.48 ± 0.06 | 46.52 ± 0.09 |
S | K | 2.96 ± 0.03 | 2.18 ± 0.02 |
Ti | L | 38.30 ± 0.28 | 18.90 ± 0.14 |
Cd | L | 10.61 ± 0.15 | 2.23 ± 0.03 |
Pt | M | 1.42 ± 0.08 | 0.17 ± 0.01 |
Material | Pt Nanoparticles TEM Size |
---|---|
Pt/P25 | 2.2 ± 0.5 |
Pt/Cd(1)-Ti | 1.4 ± 0.3 |
Pt/Cd(10)-Ti | 1.1 ± 0.3 |
Pt/Cd(20)-Ti | 1.1 ± 0.3 |
Material | Wavelength (nm) | Band Gap (eV) |
---|---|---|
CdS | 552 | 2.24 |
Pt/CdS | 546 | 2.27 |
TiO2-P25 | 414 | 2.99 |
Pt/P25 | 470 | 2.64 |
Material | EVB (eV) | EVB + EϕAg (eV) | Eg (eV) | ECB (eV) |
---|---|---|---|---|
CdS | −1.71 | −5.91 | 2.24 | −3.67 |
Pt/CdS | −1.22 | −5.42 | 2.27 | −3.15 |
TiO2-P25 | −3.05 | −7.25 | 2.99 | −4.26 |
Pt/P25 | −2.22 | −6.42 | 2.64 | −3.78 |
Material | A1 | A2 | A3 | τ1 (ns) | τ2 (ns) | τ3 (ns) | t (ns) |
---|---|---|---|---|---|---|---|
CdS | 3.29 | 0.38 | 3.88 | 2223 | 6764 | 634 | 1635 |
Pt/CdS | 0.30 | 3.04 | 4.26 | 7057 | 2391 | 740 | 1650 |
P25 | 0.220 | 4.93 | 2.54 | 14,870 | 1045 | 3860 | 2370 |
Pt/P25 | 2.63 | 4.78 | 0.205 | 3690 | 1030 | 14,850 | 2319 |
Cd(1)-Ti | 3.52 | 0.44 | 3.43 | 515 | 4803 | 1715 | 1327 |
Pt/Cd(1)-Ti | 2.57 | 0.248 | 4.38 | 3026 | 10,625 | 888 | 1987 |
Cd(10)-Ti | 0.362 | 3.44 | 3.83 | 8251 | 2301 | 660 | 1760 |
Pt/Cd(10)-Ti | 0.257 | 2.96 | 4.17 | 9485 | 2698 | 797 | 1861 |
Cd(20)-Ti | 2.54 | 4.44 | 0.283 | 3140 | 902 | 10,518 | 2059 |
Pt/Cd(20)-Ti | 0.179 | 2.62 | 4.86 | 1290 | 3370 | 914 | 2034 |
Photocatalysts | Light Source | Condition | Main Products | Ref. |
---|---|---|---|---|
CdS-TiO2 Nanocomposite | 125 W Hg lamp 350 nm < λ < 400 nm | Type reactor: Batch reactor system | 0.1875 µmol CH4/g·h 1.25 µmol CO/g·h | [73] |
Pt/TiO2/SiO2 | UV 6 W lamps λ < 365 nm 71.7 W/m2 | Type reactor: Continuous-flow mode in a stainless-steel reactor | 16.67 µmol CO/g·h 11.11 µmol CH4/g·h 55.56 µmol H2/g·h | [74] |
Pt-{101]/{001}TiO2 | 300 W Xe lamp 300 nm < λ < 400 nm 20.5 mW·cm−2 | Type reactor: Internal circulated Pyrex glass reactor | 5 µmol CH4/g·h 10 µmol H2/g·h | [75] |
CdSe/Pt/TiO2 | 300 W Xe arc lamp | Type reactor: Crucible inside a stainless-steel cube | 48 ppm CH4/g·h 3.3 ppm CH3OH/g·h Trace amounts of CO and H2 | [76] |
3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles | 300 W Xe lamp 320 < λ < 780 nm 100 mW·cm−2 | Type reactor: Gas-closed circulation system Flow: 15 mL/min | 16.2 µmol H2/g·h 98.7 µmol O2/g·h 0.7 µmol CO/g·h 36.8 µmol CH4/g·h | [32] |
P25 | UV lamp λ = 365 nm 75 mW·cm−2 | Type reactor: Ring continuous-flow reactor Flow: 0.063 mL/min. | 1.3 μmol CO/g·h 1.2 μmol CH4/g·h | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Santos, L.; Fernández-Catalá, J.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. Exploring Pt-Impregnated CdS/TiO2 Heterostructures for CO2 Photoreduction. Nanomaterials 2024, 14, 1809. https://doi.org/10.3390/nano14221809
García-Santos L, Fernández-Catalá J, Berenguer-Murcia Á, Cazorla-Amorós D. Exploring Pt-Impregnated CdS/TiO2 Heterostructures for CO2 Photoreduction. Nanomaterials. 2024; 14(22):1809. https://doi.org/10.3390/nano14221809
Chicago/Turabian StyleGarcía-Santos, Lidia, Javier Fernández-Catalá, Ángel Berenguer-Murcia, and Diego Cazorla-Amorós. 2024. "Exploring Pt-Impregnated CdS/TiO2 Heterostructures for CO2 Photoreduction" Nanomaterials 14, no. 22: 1809. https://doi.org/10.3390/nano14221809
APA StyleGarcía-Santos, L., Fernández-Catalá, J., Berenguer-Murcia, Á., & Cazorla-Amorós, D. (2024). Exploring Pt-Impregnated CdS/TiO2 Heterostructures for CO2 Photoreduction. Nanomaterials, 14(22), 1809. https://doi.org/10.3390/nano14221809