Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution
Abstract
:1. Introduction
2. Model Description
2.1. Geometric Modeling of the Mean-Field Model for Mg Alloys with Bimodal Grain Size Distribution
2.2. Constitutive Model for Homogeneous Structure Alloys
2.2.1. Dislocation Hardening Model for Homogeneous Structure Phase
2.2.2. Texture Effect on Homogeneous Structure Phase
2.3. Mori–Tanaka Mean-Field Scheme Framework of Dual-Phase Composite
- (i)
- Using the Eshelby equivalent inclusion method, the heterogeneous inclusions are equivalent to an inclusion with the same properties as the matrix. To not change the stress–strain field of inhomogeneity, a total eigenstrain () is introduced to satisfy the following relationship [69]:
- (ii)
- During plastic deformation, the average stress in inclusions can be calculated by
- (iii)
2.4. Local Flow Stress of CG and FG Phases Based on Dislocation Theory
2.4.1. Back Stress Hardening in CG Phase
2.4.2. Forward Stress Softening in FG Phase
2.4.3. Forward and Back Stress Compromised by Microcracks in CG Phase
2.4.4. Effect of Basal Texture on Flow Stress in BGS Mg
2.4.5. Flow Stress of Each Phase and HDI Effect in BGS Mg
2.5. Numerical Implementation
- (a)
- Soft-CG phase yielding and hard-FG phase elastic deformation: , , and ;
- (b)
- Hard-FG phase yielding and soft-FG CG phase plastic deformation: , , , and ;
- (c)
- Plastic deformation occurs in both CG and FG phases before necking: ;
- (d)
- Onset of necking: When the relationship between the strain-hardening rate of the compound and stress satisfies Equation (27), the calculation is complete, yielding the UTS and UEL.
3. Results and Discussion
3.1. Comparison with Experiments on Yield Strength and Strain Hardening
3.2. The Influence of Aspect Ratios of Coarse Grains on the Mechanical Response of BGS Mg Alloys
3.3. Influence of Coarse Grain Size on Mechanical Response of BGS Mg Alloys
3.4. Influence of Volume Fraction of Coarse Grains on Mechanical Response of BGS Mg Alloys
3.5. Influence of Texture Intensity of Coarse Grains on Mechanical Response of BGS Mg Alloys
4. Conclusions
- (1)
- The overall mechanical properties decrease with an increase in CG size because the limited HDI effect cannot compensate for the strength and plasticity decrease derived by larger CGs.
- (2)
- An increase in the aspect ratio R of CG reduces inter-phase strain partitioning, weakening the HDI effect, which consequently decreases the overall mechanical properties.
- (3)
- With an increase in CG volume fraction, both yield and tensile strength decrease. However, under the influence of the HDI effect, the plasticity of BGS ZK60 increases. When the CG volume fraction is about 30%, there is a good synergistic effect between strength and plasticity.
- (4)
- Enhancing the basal texture intensity improves the BGS ZK60 yield strength and uniform elongation, and they reach the maximum value at the medium texture intensity with 60% hard-oriented CG content. Further increasing the hard-oriented CG content will decrease strength and plasticity instead.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculating the Influence of Texture on Flow Stress Using the VPSC Model
Appendix A1. Model Description
Appendix A2. Numerical Results
Appendix A2.1. Model Validation
Deformation Mode | Crystallographic Type | /MPa | /MPa | /MPa | /MPa |
---|---|---|---|---|---|
Basal <a> | 8 | 55 | 350 | 120 | |
Prismatic <a> | 150 | 50 | 280 | 0 | |
Pyramidal <a> | 300 | 150 | 800 | 0 | |
Pyramidal <c + a> | 180 | 300 | 4200 | 0 | |
Tension twin | 80 | 0 | 0 | 0 | |
Contraction twin | 220 | 0 | 0 | 100 |
Appendix A2.2. The Effect of Basal Texture Intensity on CG Flow Stress
Appendix B. Eshelby Tensor for Isotropic Materials
References
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloy. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, D.; Peng, P.; Wei, G.; Zhang, J.; Jiang, B.; Pan, F. Asymmetric Extrusion Technology of Mg Alloy: A Review. Materials 2023, 16, 5255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening. Acta Metall. Sin. 2022, 58, 1349–1359. [Google Scholar] [CrossRef]
- Tellkamp, V.L.; Lavernia, E.J.; Melmed, A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 2001, 32, 2335–2343. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Zhou, F.; Ma, E. High tensile ductility in a nanostructured metal. Nature 2002, 419, 912–915. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhang, Y.; Tao, N.R.; Lu, K. Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scr. Mater. 2008, 59, 475–478. [Google Scholar] [CrossRef]
- Bach, J.; Stoiber, M.; Schindler, L.; Höppel, H.W.; Göken, M. Deformation mechanisms and strain rate sensitivity of bimodal and ultrafine-grained copper. Acta Mater. 2020, 186, 363–373. [Google Scholar] [CrossRef]
- Qian, T.; Karaman, I.; Marx, M. Mechanical Properties of Nanocrystalline and Ultrafine-Grained Nickel with Bimodal Microstructure. Adv. Eng. Mater. 2014, 16, 1323–1339. [Google Scholar] [CrossRef]
- Prasad, M.J.N.V.; Suwas, S.; Chokshi, A.H. Microstructural evolution and mechanical characteristics in nanocrystalline nickel with a bimodal grain-size distribution. Mater. Sci. Eng. A 2009, 503, 86–91. [Google Scholar] [CrossRef]
- Tejedor, R.; Rodríguez-Baracaldo, R.; Benito, J.A.; Cabrera, J.M.; Prado, J.M. Plastic deformation of a nanostructured and ultra-fine grained Fe-1%Cr with a bimodal grain size distribution. Int. J. Mater. Form. 2008, 1, 487–490. [Google Scholar] [CrossRef]
- Fan, G.J.; Choo, H.; Liaw, P.K.; Lavernia, E.J. Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution. Acta Mater. 2006, 54, 1759–1766. [Google Scholar] [CrossRef]
- Lee, Z.; Radmilovic, V.; Ahn, B.; Lavernia, E.J.; Nutt, S.R. Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al-Mg Alloy. Metall. Mater. Trans. A 2010, 41, 795–801. [Google Scholar] [CrossRef]
- Shakoori Oskooie, M.; Asgharzadeh, H.; Kim, H.S. Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure. J. Alloy. Compd. 2015, 632, 540–548. [Google Scholar] [CrossRef]
- He, J.H.; Jin, L.; Wang, F.H.; Dong, S.; Dong, J. Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions. J. Magnes. Alloy. 2017, 5, 423–429. [Google Scholar] [CrossRef]
- Xu, C.; Fan, G.H.; Nakata, T.; Liang, X.; Chi, Y.Q.; Qiao, X.G.; Cao, G.J.; Zhang, T.T.; Huang, M.; Miao, K.S.; et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure. Metall. Mater. Trans. A 2018, 49, 1931–1947. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.y.; Wang, J.g.; Rong, J.; Zha, M.; Wang, C.; Ma, P.k.; Jiang, Q.c. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys. J. Alloy. Compd. 2019, 780, 312–317. [Google Scholar] [CrossRef]
- Jin, Z.-Z.; Zha, M.; Yu, Z.-Y.; Ma, P.-K.; Li, Y.-K.; Liu, J.-M.; Jia, H.-L.; Wang, H.-Y. Exploring the Hall-Petch relation and strengthening mechanism of bimodal-grained Mg–Al–Zn alloys. J. Alloy. Compd. 2020, 833, 155004. [Google Scholar] [CrossRef]
- Wei, X.; Jin, L.; Wang, F.; Li, J.; Ye, N.; Zhang, Z.; Dong, J. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates. J. Mater. Sci. Technol. 2020, 44, 19–23. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Chen, X.; Huang, G.; Xia, D.; Tang, A.; Zhu, Y.; Jiang, B.; Pan, F. Improving mechanical properties of heterogeneous Mg-Gd alloy laminate via accumulated extrusion bonding. Mater. Sci. Eng. A 2020, 785, 139324. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Y.; Li, R.; Gao, Y. Enhanced strength-ductility synergy and activation of non-basal slip in as-extruded Mg–Zn–Ca alloy via heterostructure. J. Mater. Res. Technol. 2024, 28, 1841–1851. [Google Scholar] [CrossRef]
- Dobkowska, A.; Adamczyk-Cieślak, B.; Kubásek, J.; Vojtěch, D.; Kuc, D.; Hadasik, E.; Mizera, J. Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn. J. Magnes. Alloy. 2021, 9, 467–477. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Chen, X.; Huang, G.; Zou, Q.; Tang, A.; Jiang, B.; Zhu, Y.; Pan, F. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength–ductility synergy. J. Mater. Sci. Technol. 2022, 113, 271–286. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Yang, H.; Chen, X.; Huang, G.; Tang, A.; Chen, X.; Jiang, B.; Pan, F. Optimization in strength-ductility of heterogeneous Mg-13Gd alloy via small extrusion ratio combined with pre-aging. Mater. Sci. Eng. A 2022, 833, 142540. [Google Scholar] [CrossRef]
- Nishimoto, S.; Yamasaki, M.; Kawamura, Y. Inherited multimodal microstructure evolution of high-fracture-toughness Mg-Zn-Y-Al alloys during extrusion for the consolidation of rapidly solidified ribbons. J. Magnes. Alloy. 2022, 10, 2433–2445. [Google Scholar] [CrossRef]
- Luo, Y.-h.; Cheng, W.-l.; Li, H.; Yu, H.; Wang, H.-x.; Niu, X.-f.; Wang, L.-f.; You, Z.-y.; Hou, H. Achieving high strength-ductility synergy in a novel Mg–Bi–Sn–Mn alloy with bimodal microstructure by hot extrusion. Mater. Sci. Eng. A 2022, 834, 142623. [Google Scholar] [CrossRef]
- Li, Y.-K.; Zha, M.; Jia, H.-L.; Wang, S.-Q.; Zhang, H.-M.; Ma, X.; Tian, T.; Ma, P.-K.; Wang, H.-Y. Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles. J. Magnes. Alloy. 2021, 9, 1556–1566. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yu, Z.P.; Zhang, L.; Liu, C.G.; Zha, M.; Wang, C.; Jiang, Q.C. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process. Sci. Rep. 2015, 5, 17100. [Google Scholar] [CrossRef]
- Zhang, H.; Zha, M.; Tian, T.; Jia, H.-L.; Gao, D.; Yang, Z.-Z.; Wang, C.; Wang, H.-Y. Prominent role of high-volume fraction Mg17Al12 dynamic precipitations on multimodal microstructure formation and strength-ductility synergy of Mg–Al–Zn alloys processed by hard-plate rolling (HPR). Mater. Sci. Eng. A 2021, 808, 140920. [Google Scholar] [CrossRef]
- Gao, M.; Yang, K.; Tan, L.; Ma, Z. Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy. J. Magnes. Alloy. 2021, 10, 2147–2157. [Google Scholar] [CrossRef]
- Cubides, Y.; Ivan Karayan, A.; Vaughan, M.W.; Karaman, I.; Castaneda, H. Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: The role of bimodal grain structure and β-Mg17Al12 precipitates. Materialia 2020, 13, 100840. [Google Scholar] [CrossRef]
- Asqardoust, S.; Zarei Hanzaki, A.; Abedi, H.R.; Krajnak, T.; Minárik, P. Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening. Mater. Sci. Eng. A 2017, A698, 218–229. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, M.Y.; Xu, S.W.; Wu, K.; Wang, E.D.; Kamado, S.; Wang, G.J.; Lv, X.Y. Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Mater. Sci. Eng. A 2012, A547, 93–98. [Google Scholar] [CrossRef]
- Fu, W.; Dang, P.; Guo, S.; Ren, Z.; Fang, D.; Ding, X.; Sun, J. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy. J. Mater. Sci. Technol. 2023, 134, 67–80. [Google Scholar] [CrossRef]
- Jin, Z.-Z.; Zha, M.; Wang, S.-Q.; Wang, S.-C.; Wang, C.; Jia, H.-L.; Wang, H.-Y. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. J. Magnes. Alloy. 2022, 10, 1191–1206. [Google Scholar] [CrossRef]
- Li, J.; Zhang, A.; Pan, H.; Ren, Y.; Zeng, Z.; Huang, Q.; Yang, C.; Ma, L.; Qin, G. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy. J. Magnes. Alloy. 2021, 9, 1297–1303. [Google Scholar] [CrossRef]
- Wu, J.; Shu, H.; Zhang, M.; Chen, Y. Microstructure and mechanical properties of Mg-2Sn-1.95Ca-0.5Ce alloy with different extrusion speeds. Mater. Res. Express 2021, 8, 016542. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Wang, W.; Liu, S.; Sun, B.; Xie, J.; Xiao, T. Unveiling the deformation mechanism of highly deformable magnesium alloy with heterogeneous grains. Scr. Mater. 2022, 221, 114963. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Yan, H.; Nakata, T.; Chen, Z.W.; Lao, C.S.; Chen, R.S.; Kamado, S.; Han, E.H. Quasi-in-situ observing the rare earth texture evolution in an extruded Mg-Zn-Gd alloy with bimodal microstructure. J. Magnes. Alloy. 2021, 9, 1797–1805. [Google Scholar] [CrossRef]
- Zheng, T.; Hu, Y.; Zhang, C.; Zhao, T.; Jiang, B.; Pan, F.; Tang, A. Uncovering of the formation of rare earth texture and pseudo fiber bimodal microstructure in the high ductility Mg-2Gd-0.4Zr alloy during extrusion. J. Mater. Sci. Technol. 2024, 172, 166–184. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408. [Google Scholar] [CrossRef]
- Tang, C.; Chen, J.; Ma, X.; Liu, W.; Xie, H.; Li, M.; Liu, X. Effects of extrusion speed on the formation of bimodal-grained structure and mechanical properties of a Mg-Gd-based alloy. Mater. Charact. 2022, 189, 111952. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, J.; Zhang, Z.; Xue, Y. High elongation heterostructure rare earth magnesium alloy based on rotating backward extrusion process. J. Mater. Res. Technol. 2024, 30, 6108–6122. [Google Scholar] [CrossRef]
- Alizadeh, R.; Mahmudi, R.; Ngan, A.H.W.; Langdon, T.G. An Unusual Extrusion Texture in Mg–Gd–Y–Zr Alloys. Adv. Eng. Mater. 2016, 18, 1044–1049. [Google Scholar] [CrossRef]
- Li, S.; Dong, Z.; Jin, J.; Pan, H.; Hu, Z.; Hou, R.; Qin, G. Optimal design of high-performance rare-earth-free wrought magnesium alloys using machine learning. Mater. Genome Eng. Adv. 2024, 2024, e45. [Google Scholar] [CrossRef]
- Wang, T.; Zha, M.; Du, C.; Jia, H.-L.; Wang, C.; Guan, K.; Gao, Y.; Wang, H.-Y. High strength and high ductility achieved in a heterogeneous lamella-structured magnesium alloy. Mater. Res. Lett. 2023, 11, 187–195. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwak, B.J.; Kong, T.; Park, S.H.; Lee, T. Improved tensile properties of AZ31 Mg alloy subjected to various caliber-rolling strains. J. Magnes. Alloy. 2019, 7, 381–387. [Google Scholar] [CrossRef]
- Yu, H.; Xin, Y.; Cheng, Y.; Guan, B.; Wang, M.; Liu, Q. The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys. Mater. Sci. Eng. A 2017, 700, 695–700. [Google Scholar] [CrossRef]
- Wei, K.; Xiao, L.; Gao, B.; Li, L.; Liu, Y.; Ding, Z.; Liu, W.; Zhou, H.; Zhao, Y. Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults. J. Magnes. Alloy. 2020, 8, 1221–1227. [Google Scholar] [CrossRef]
- Zha, M.; Ma, X.; Jia, H.-L.; Hua, Z.-M.; Fan, Z.-X.; Yang, Z.-Z.; Gao, Y.-P.; Wang, H.-Y. Dynamic precipitation and deformation behaviors of a bimodal-grained WE43 alloy with enhanced mechanical properties. Int. J. Plast. 2023, 167, 103682. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, Y.; Wu, Y.; Chen, Y.; Sun, M.; Chen, J.; Peng, L. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys. Mater. Sci. Eng. A 2019, 740, 262–273. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Cheng, X.-M.; Zha, M.; Li, Y.-K.; Wang, C.; Yang, Z.-Z.; Wang, J.-G.; Wang, H.-Y. A superplastic bimodal grain-structured Mg–9Al–1Zn alloy processed by short-process hard-plate rolling. Materialia 2019, 8, 100443. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.-H.; Park, S.H. Tensile Properties at Room and Elevated Temperatures and High-Cycle Fatigue Properties of Extruded AZ80 and TAZ711 Alloys. Korean J. Met. Mater. 2018, 56, 699–707. [Google Scholar] [CrossRef]
- Ji, Z.K.; Qiao, X.G.; Yuan, L.; Cong, F.G.; Wang, G.J.; Zheng, M.Y. Exceptional fracture toughness in a high-strength Mg alloy with the synergetic effects of bimodal structure, LPSO, and nanoprecipitates. Scr. Mater. 2023, 236, 115675. [Google Scholar] [CrossRef]
- Dang, C.; Wang, J.; Wang, J.; Yu, D.; Zheng, W.; Xu, C.; Wang, Z.; Feng, L.; Chen, X.; Pan, F. Simultaneous improvement of strength and damping capacity of Mg-Mn alloy by tailoring bimodal grain structure. Vacuum 2023, 215, 112275. [Google Scholar] [CrossRef]
- Murr, L.E. Dislocation Ledge Sources: Dispelling the Myth of Frank–Read Source Importance. Metall. Mater. Trans. A 2016, 47, 5811–5826. [Google Scholar] [CrossRef]
- Li, J.C.M. Petch relation and grain boundary sources. Trans. Metall. Soc. AIME 1963, 227, 239. [Google Scholar]
- Ashby, M.F. The deformation of plastically non-homogeneous materials. Philos. Mag. 1970, 21, 399–424. [Google Scholar] [CrossRef]
- Feaugas, X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress. Acta Mater. 1999, 47, 3617–3632. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Y. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution. Int. J. Plast. 2012, 30–31, 166–184. [Google Scholar] [CrossRef]
- Li, J.; Lu, W.; Chen, S.; Liu, C. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures. Int. J. Plast. 2020, 126, 102626. [Google Scholar] [CrossRef]
- Shimokawa, T.; Hasegawa, T.; Kiyota, K.; Niiyama, T.; Ameyama, K. Heterogeneous evolution of lattice defects leading to high strength and high ductility in harmonic structure materials through atomic and dislocation simulations. Acta Mater. 2022, 226, 117679. [Google Scholar] [CrossRef]
- Wang, X.; Guan, D. The evolution of coarse grains and its effects on weakened basal texture during annealing of a cold-rolled magnesium AZ31B alloy. J. Magnes. Alloy. 2022, 10, 1235–1241. [Google Scholar] [CrossRef]
- Liu, S.-s.; Liu, H.; Zhang, B.-x.; Huang, G.-s.; Chen, X.; Tang, A.-t.; Jiang, B.; Pan, F.-s. Effects of extrusion temperature on microstructure evolution and mechanical properties of heterogeneous Mg−Gd alloy laminates via accumulated extrusion bonding. Trans. Nonferrous Met. Soc. China 2022, 32, 2190–2204. [Google Scholar] [CrossRef]
- Liu, S.; Xia, D.; Yang, H.; Huang, G.; Yang, F.; Chen, X.; Tang, A.; Jiang, B.; Pan, F. Mechanical properties and deformation mechanism in Mg-Gd alloy laminate with dual-heterostructure grain size and texture. Int. J. Plast. 2022, 157, 103371. [Google Scholar] [CrossRef]
- Liu, S.-s.; Yang, B.-p.; Huang, G.-s.; Chen, X.-h.; Tang, A.-t.; Jiang, B.; Zheng, K.-h.; Pan, F.-s. Effect of dual-heterogeneous microstructures on mechanical properties of AZ91 extruded sheet. Trans. Nonferrous Met. Soc. China 2023, 33, 1086–1097. [Google Scholar] [CrossRef]
- Wu, J.; Jin, L.; Dong, J.; Wang, F.; Dong, S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020, 42, 175–189. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, W.; Zhou, B.; He, C.; Yan, C.; Jin, Z.; Yu, H.; Xin, Y. Quantitative study on the tension-compression yield asymmetry of a Mg-3Al-1Zn alloy with bimodal texture components. J. Magnes. Alloy. 2022, 10, 1680–1693. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, B.; Xin, Y.; Huang, X.; Liu, C.; Wu, P.; Liu, Q. A quantitative study on mechanical behavior of Mg alloys with bimodal texture components. Acta Mater. 2021, 214, 117013. [Google Scholar] [CrossRef]
- Huang, C.X.; Wang, Y.F.; Ma, X.L.; Yin, S.; Höppel, H.W.; Göken, M.; Wu, X.L.; Gao, H.J.; Zhu, Y.T. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today 2018, 21, 713–719. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Yu, Z.; Zhao, J.; Wei, Y. Hetero-zone boundary affected region: A primary microstructural factor controlling extra work hardening in heterostructure. Acta Mater. 2022, 241, 118395. [Google Scholar] [CrossRef]
- Peng, P.; Tang, A.; She, J.; Zhang, J.; Zhou, S.; Song, K.; Pan, F. Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure. Mater. Sci. Eng. A 2021, 803, 140569. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, T.; Tang, A.; Shi, H.; Chen, T.; Peng, P.; Zhang, J.; She, J.; Pan, F. Unveiling the interplay of deformation mechanism in wrought Mg–Sc alloy with different content of manganese. J. Mater. Res. Technol. 2022, 20, 3522–3536. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y. Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 2001, 38, 2615–2637. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef]
- Yasnikov, I.S.; Kaneko, Y.; Uchida, M.; Vinogradov, A. The grain size effect on strain hardening and necking instability revisited from the dislocation density evolution approach. Mater. Sci. Eng. A 2022, 831, 142330. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Ma, X.; Zhao, J.; Guo, F.; Fang, X.; Zhu, Y.; Wei, Y. The optimum grain size for strength-ductility combination in metals. Int. J. Plast. 2023, 164, 103574. [Google Scholar] [CrossRef]
- Taylor, G.I. The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Charact. 1934, 145, 362–387. [Google Scholar]
- Yan, H.; Xu, S.W.; Chen, R.S.; Kamado, S.; Honma, T.; Han, E.H. Activation of {1012} twinning and slip in high ductile Mg–2.0Zn–0.8Gd rolled sheet with non-basal texture during tensile deformation at room temperature. J. Alloys Compd. 2013, 566, 98–107. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 1993, 41, 2611–2624. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Benveniste, Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987, 6, 147–157. [Google Scholar] [CrossRef]
- Weng, G.J. The overall elastoplastic stress-strain relations of dual-phase metals. J. Mech. Phys. Solids 1990, 38, 419–441. [Google Scholar] [CrossRef]
- Lee, M.G.; Kim, S.J.; Wagoner, R.H.; Chung, K.; Kim, H.Y. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback. Int. J. Plast. 2009, 25, 70–104. [Google Scholar] [CrossRef]
- Lukáč, P.; Balík, J. Kinetics of plastic deformation. Key Eng. Mater. 1995, 97, 307–322. [Google Scholar] [CrossRef]
- Eswarappa Prameela, S.; Yi, P.; Hollenweger, Y.; Liu, B.; Chen, J.; Kecskes, L.; Kochmann, D.M.; Falk, M.L.; Weihs, T.P. Strengthening magnesium by design: Integrating alloying and dynamic processing. Mech. Mater. 2022, 167, 104203. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Weng, G.J.; Lu, W. A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary. Int. J. Plast. 2021, 144, 103024. [Google Scholar] [CrossRef]
- Hasegawa, T.; Yakou, T.; Kocks, U.F. Forward and reverse rearrangements of dislocations in tangled walls. Mater. Sci. Eng. A 1986, 81, 189–199. [Google Scholar] [CrossRef]
- Zirkle, T.; Zhu, T.; McDowell, D.L. Micromechanical crystal plasticity back stress evolution within FCC dislocation substructure. Int. J. Plast. 2021, 146, 103082. [Google Scholar] [CrossRef]
- Marukawa, K.; Sanpei, T. Stability of the work hardened state against stress reversal in copper single crystals. Acta Metall. 1971, 19, 1169–1176. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, P.; Chen, L.; Yuan, F.; Zhu, Y.T. Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 2014, 111, 7197–7201. [Google Scholar] [CrossRef] [PubMed]
- Castelluccio, G.M.; McDowell, D.L. Mesoscale cyclic crystal plasticity with dislocation substructures. Int. J. Plast. 2017, 98, 1–26. [Google Scholar] [CrossRef]
- Wu, H.; Fan, G. An overview of tailoring strain delocalization for strength-ductility synergy. Prog. Mater. Sci. 2020, 113, 100675. [Google Scholar] [CrossRef]
- Li, S.; Jin, J.; Song, Y.; Wang, M.; Tang, S.; Zong, Y.; Qin, G. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of “Process-Structure-Property”. Acta Metall. Sin. 2022, 58, 114–128. [Google Scholar] [CrossRef]
- Wu, H.; Fan, G.; Huang, M.; Geng, L.; Cui, X.; Xie, H. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect. Int. J. Plast. 2017, 89, 96–109. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Lebensohn, R.A.; Tomé, C.N. Modeling texture and microstructural evolution in the equal channel angular extrusion process. Mater. Sci. Eng. A 2003, 345, 122–138. [Google Scholar] [CrossRef]
- Sun, H.Q.; Shi, Y.N.; Zhang, M.X.; Lu, K. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater. 2007, 55, 975–982. [Google Scholar] [CrossRef]
- Li, S.; Jin, J.; Wang, Y.; Pan, H.; Qin, G. Experimental and simulation study on mechanical properties of ZK60 magnesium alloy after accumulative roll bonding. J. Phys. Conf. Ser. 2024, 2842, 012036. [Google Scholar] [CrossRef]
- Peng, P.; Zhang, K.; She, J.; Tang, A.; Zhang, J.; Song, K.; Yang, Q.; Pan, F. Role of second phases and grain boundaries on dynamic recrystallization behavior in ZK60 magnesium alloy. J. Alloys Compd. 2021, 861, 157958. [Google Scholar] [CrossRef]
- Sabbaghian, M.; Fakhar, N.; Nagy, P.; Fekete, K.; Gubicza, J. Investigation of shear and tensile mechanical properties of ZK60 Mg alloy sheet processed by rolling and sheet extrusion. Mater. Sci. Eng. A 2021, 828, 142098. [Google Scholar] [CrossRef]
- Mukai, T.; Yamanoi, M.; Watanabe, H.; Ishikawa, K.; Higashi, K. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading. Mater. Trans. 2001, 42, 1177–1181. [Google Scholar] [CrossRef]
- Tome, C.N.; Lebensohn, R.A. Material Modeling with the Visco-Plastic Self-Consistent (VPSC) Approach: Theory and Practical Applications; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Kabirian, F.; Khan, A.S.; Gnäupel-Herlod, T. Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. Int. J. Plast. 2015, 68, 1–20. [Google Scholar] [CrossRef]
Type of Parameters | Symbol | Unit | Parameter Value | Reference |
---|---|---|---|---|
Elastic modulus | E | GPa | 44.4 | [95] |
Shear modulus | G | GPa | 17.5 | |
Poisson’s ratio | v | 0.27 | ||
Magnitude of Burgers vector | b | nm | 0.25 | |
Taylor factor | M | 3.06 | ||
Taylor constant | α | 0.30 | ||
Mean free path of dislocation dipole annihilation | nm | 50 | [98] | |
Mean spacing between pileups | h | nm | 2000 | |
Attenuation coefficient | 0.1 | |||
Maximum number of dislocations | 200 | |||
Mean spacing between pileups induced by cracks | nm | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Jin, J.; Sun, H.; Wang, Y.; Ren, Y.; Wang, M.; Qin, G. Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution. Nanomaterials 2024, 14, 1807. https://doi.org/10.3390/nano14221807
Li S, Jin J, Sun H, Wang Y, Ren Y, Wang M, Qin G. Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution. Nanomaterials. 2024; 14(22):1807. https://doi.org/10.3390/nano14221807
Chicago/Turabian StyleLi, Shaojie, Jianfeng Jin, Hao Sun, Yongbo Wang, Yuping Ren, Mingtao Wang, and Gaowu Qin. 2024. "Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution" Nanomaterials 14, no. 22: 1807. https://doi.org/10.3390/nano14221807
APA StyleLi, S., Jin, J., Sun, H., Wang, Y., Ren, Y., Wang, M., & Qin, G. (2024). Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution. Nanomaterials, 14(22), 1807. https://doi.org/10.3390/nano14221807