Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiOxNy Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Characterization
3. Results and Discussion
3.1. Long-Term Stability of SiOxNy Matrix Films
3.2. SiOxNy Composite Films with SWCNT
3.3. Optical Constants and Properties of Prepared SiOxNy and SiOxNy/SWCNT Coatings
3.4. Antireflection Effect in SiOxNy and SiOxNy/SWCNT Structures
3.5. Progressive Load Test of SiOxNy and SiOxNy/SWCNT Coatings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raman, R.K.; Thangavelu, S.A.G.; Venkataraj, S.; Krishnamoorthy, A. Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present. Renew. Sustain. Energy Rev. 2021, 151, 111608. [Google Scholar] [CrossRef]
- Aitola, K.; Sonai, G.G.; Markkanen, M.; Kaschuk, J.J.; Hou, X.; Miettunen, K.; Lund, P.D. Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Sol. Energy 2022, 237, 264–283. [Google Scholar] [CrossRef]
- Wu, M.; Ma, B.; Li, S.; Han, J.; Zhao, W. Powering the future: A critical review of research progress in enhancing stability of high-efficiency organic solar cells. Adv. Funct. Mater. 2023, 33, 2305445. [Google Scholar] [CrossRef]
- Afre, R.A.; Pugliese, D. Perovskite solar cells: A review of the latest advances in materials, fabrication techniques, and stability enhancement strategies. Micromachines 2024, 15, 192. [Google Scholar] [CrossRef]
- Channa, I.A.; Distler, A.; Zaiser, M.; Brabec, C.J.; Egelhaaf, H. Thin film encapsulation of organic solar cells by direct deposition of polysilazanes from solution. Adv. Energy Mater. 2019, 9, 1900598. [Google Scholar] [CrossRef]
- Peng, J.; Ye, P.; Xu, F.; Bu, X.; Wang, R.; Lin, D.; Yuan, S.; Zhu, Y.; Wang, H. Highly transparent, self-cleaning, and UV-shielding composite coating: When eco-friendly waterborne omniphobic surface cooperates with quantum dots. Compos. Part B Eng. 2024, 284, 111731. [Google Scholar] [CrossRef]
- Woo, J.-H.; Park, S.-Y.; Koo, D.; Song, M.H.; Park, H.; Kim, J.-Y. Highly elastic and corrosion-resistive metallic glass thin films for flexible encapsulation. ACS Appl. Mater. Interfaces 2022, 14, 5578–5585. [Google Scholar] [CrossRef]
- Prager, L.; Helmstedt, U.; Herrnberger, H.; Kahle, O.; Kita, F.; Münch, M.; Pender, A.; Prager, A.; Gerlach, J.; Stasiak, M. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices. Thin Solid Films 2014, 570, 87–95. [Google Scholar] [CrossRef]
- Amouzou, D.; Fourdrinier, L.; Sporken, R. Investigation of adhesion between molybdenum and polysilazane by XPS. Appl. Surf. Sci. 2015, 343, 202–206. [Google Scholar] [CrossRef]
- Sun, C.; Wang, D.; Xu, C.; Chen, W.; Zhang, Z. Comparative study on polysilazane and silicone resins as high-temperature-resistant coatings. High Perform. Polym. 2022, 34, 474–486. [Google Scholar] [CrossRef]
- Zhan, Y.; Grottenmüller, R.; Li, W.; Javaid, F.; Riedel, R. Evaluation of mechanical properties and hydrophobicity of room-temperature, moisture-curable polysilazane coatings. J. Appl. Polym. Sci. 2021, 138, 50469. [Google Scholar] [CrossRef]
- Yue, S.; Wang, S.; Han, D.; Huang, S.; Xiao, M.; Meng, Y. Perhydropolysilazane-derived-SiOx coated cellulose: A transparent biodegradable material with high gas barrier property. Cellulose 2022, 29, 8293–8303. [Google Scholar] [CrossRef]
- Burak, D.; Rahman, A.; Seo, D.-C.; Byun, J.Y.; Han, J.; Lee, S.E.; Cho, S.-H. In situ metal deposition on perhydropolysilazane-derived silica for structural color surfaces with antiviral activity. ACS Appl. Mater. Interfaces 2023, 15, 54143–54156. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.J.; Park, S.M.; Kim, Y.R.; Chang, K.C.; Heo, Y.-J.; Bae, G.Y.; Choi, K.H.; Shin, G. Intense pulsed UV light treatment to design functional optical films from perhydropolysilazane: An alternative to conventional heat treatment processes. J. Mater. Sci. 2022, 57, 254–273. [Google Scholar] [CrossRef]
- Kim, J.; Jang, J.H.; Kim, J.-H.; Park, K.; Jang, J.S.; Park, J.; Park, N. Inorganic encapsulation method using solution-processible polysilazane for flexible solar cells. ACS Appl. Energy Mater. 2020, 3, 9257–9263. [Google Scholar] [CrossRef]
- Back, H.S.; Kim, M.J.; Baek, J.J.; Kim, D.H.; Shin, G.; Choi, K.H.; Cho, J.H. Intense-pulsed-UV-converted perhydropolysilazane gate dielectrics for organic field-effect transistors and logic gates. RSC Adv. 2019, 9, 3169–3175. [Google Scholar] [CrossRef]
- Yang, N.; Wang, W.; Cai, W.; Lu, K. Corrosion and tribocorrosion mitigation of perhydropolysilazane-derived coatings on low carbon steel. Corros. Sci. 2020, 177, 108946. [Google Scholar] [CrossRef]
- With, P.; Pröhl, T.; Gerlach, J.; Prager, A.; Konrad, A.; Arena, F.; Helmstedt, U. Hydrogen permeation through uniaxially strained SiOx barrier thin films photochemically prepared on PET foil substrates. Int. J. Hydrogen Energy 2024, 81, 405–410. [Google Scholar] [CrossRef]
- Shi, E.; Li, H.; Yang, L.; Zhang, L.; Li, Z.; Li, P.; Shang, Y.; Wu, S.; Li, X.; Wei, J.; et al. Colloidal antireflection coating improves graphene–silicon solar cells. Nano Lett. 2013, 13, 1776–1781. [Google Scholar] [CrossRef]
- Lu, M.; Liu, Q.; Wang, Z.; Zhang, X.; Luo, G.; Lu, J.; Zeng, D.; Zhao, X.; Tian, S. Facile preparation of porous SiO2 antireflection film with high transmittance and hardness via self-templating method for perovskite solar cells. Mater. Today Chem. 2023, 29, 101473. [Google Scholar] [CrossRef]
- Kim, D.; Jeon, G.G.; Kim, J.H.; Kim, J.; Park, N. Design of a flexible thin-film encapsulant with sandwich structures of Perhydropolysilazane layers. ACS Appl. Mater. Interfaces 2022, 14, 34678–34685. [Google Scholar] [CrossRef] [PubMed]
- Duo, L.; Zhang, Z.; Zheng, K.; Wang, D.; Xu, C.; Xia, Y. Perhydropolysilazane derived SiON interfacial layer for Cu/epoxy molding compound composite. Surf. Coat. Technol. 2020, 391, 125703. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Charlier, J.C.; Hernández, E. Electronic, Thermal and Mechanical Properties of Carbon Nanotubes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2065–2098. [Google Scholar] [CrossRef] [PubMed]
- Foygel, M.; Morris, R.D.; Anez, D.; French, S.; Sobolev, V.L. Theoretical and Computational Studies of Carbon Nanotube Com-posites and Suspensions: Electrical and Thermal Conductivity. Phys. Rev. B Condens. Matter. Mater. Phys. 2005, 71, 104201. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical properties of carbon nanotube/polymer composites. Sci. Rep. 2014, 4, 6479. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, N.; He, C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review. Prog. Mater. Sci. 2020, 113, 100672. [Google Scholar] [CrossRef]
- Shmagina, E.; Volobujeva, O.; Nasibulin, A.G.; Bereznev, S. Fabrication of novel SiOxNy/SWCNT laminate-type composite protective coating using low-temperature approach. Ceram. Int. 2024, 50, 34312–34320. [Google Scholar] [CrossRef]
- Shmagina, E.; Danilson, M.; Mikli, V.; Bereznev, S. Comparative study of perhydropolysilazane protective films. Surf. Eng. 2022, 38, 769–777. [Google Scholar] [CrossRef]
- Khabushev, E.M.; Krasnikov, D.V.; Goldt, A.E.; Fedorovskaya, E.O.; Tsapenko, A.P.; Zhang, Q.; Kauppinen, E.I.; Kallio, T.; Nasibulin, A.G. Joint effect of ethylene and toluene on carbon nanotube growth. Carbon 2022, 189, 474–483. [Google Scholar] [CrossRef]
- Rajanna, P.M.; Meddeb, H.; Sergeev, O.; Tsapenko, A.P.; Bereznev, S.; Vehse, M.; Volobujeva, O.; Danilson, M.; Lund, P.D.; Nasibulin, A.G. Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy 2020, 67, 104183. [Google Scholar] [CrossRef]
- Drozdov, G.; Ostanin, I.; Xu, H.; Wang, Y.; Dumitrică, T.; Grebenko, A.; Tsapenko, A.P.; Gladush, Y.; Ermolaev, G.; Volkov, V.S.; et al. Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation. J. Appl. Phys. 2020, 128, 184701. [Google Scholar] [CrossRef]
- Song, C.; Song, J.; Wang, X. Interface and Size Effects of Amorphous Si/Amorphous Silicon Oxynitride Multilayer Structures on the Photoluminescence Spectrum. Coatings 2024, 14, 977. [Google Scholar] [CrossRef]
- Alayo, M.; Pereyra, I.; Scopel, W.; Fantini, M. On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films. Thin Solid Films 2002, 402, 154–161. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Ryzhkov, S.A.; Besedina, N.A.; Brzhezinskaya, M.; Malkov, M.N.; Stolyarova, D.Y.; Arutyunyan, A.F.; Struchkov, N.S.; Saveliev, S.D.; Diankin, I.D.; et al. Guiding Graphene Derivatization for Covalent Immobilization of Aptamers. Carbon 2022, 196, 264–279. [Google Scholar] [CrossRef]
- Prager, L.; Dierdorf, A.; Liebe, H.; Naumov, S.; Stojanović, S.; Heller, R.; Wennrich, L.; Buchmeiser, M.R. Conversion of Perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings. Chem.—Eur. J. 2007, 13, 8522–8529. [Google Scholar] [CrossRef]
- Sasaki, T.; Sun, L.; Kurosawa, Y.; Takahashi, T.; Suzuri, Y. Nanometer-thick SiN films as gas barrier coatings densified by vacuum UV irradiation. ACS Appl. Nano Mater. 2021, 4, 10344–10353. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Z.; Luo, Y.; An, P.; Zhang, M.; Xu, C. Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane. Polym. Int. 2015, 64, 971–978. [Google Scholar] [CrossRef]
- Ermakova, E.; Shayapov, V.; Saraev, A.; Maximovsky, E.; Kirienko, V.; Khomyakov, M.; Sulyaeva, V.; Kolodin, A.; Gerasimov, E.; Kosinova, M. Effect of Plasma Power on Growth Process, Chemical Structure, and Properties of PECVD Films Produced from Hexamethyldisilane and Ammonia. Surf. Coat. Technol. 2024, 490, 131131. [Google Scholar] [CrossRef]
- Canar, H.H.; Bektaş, G.; Turan, R. On the Passivation Performance of SiNx, SiOxNy and Their Stack on C-Si Wafers for Solar Cell Applications: Correlation with Optical, Chemical and Interface Properties. Sol. Energy Mater. Sol. Cells 2023, 256, 112356. [Google Scholar] [CrossRef]
- Günthner, M.; Wang, K.; Bordia, R.K.; Motz, G. Conversion behaviour and resulting mechanical properties of polysilazane-based coatings. J. Eur. Ceram. Soc. 2012, 32, 1883–1892. [Google Scholar] [CrossRef]
- Jin, X.; Guo, X.; Zhai, L.; Vogelbacher, F.; Xia, Y.; Li, M.; Xu, C.; Zhang, Z. Robust and flexible free-standing polyimide/SiOx nanocomposite one-dimensional photonic crystals with high reflectance. J. Mater. Sci. 2023, 58, 1656–1669. [Google Scholar] [CrossRef]
- Nakajima, K.; Uchiyama, H.; Kitano, T.; Kozuka, H. Conversion of solution-derived Perhydropolysilazane thin films into silica in basic humid atmosphere at room temperature. J. Am. Ceram. Soc. 2013, 96, 2806–2816. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Tsapenko, A.P.; Volkov, V.S.; Anisimov, A.S.; Gladush, Y.G.; Nasibulin, A.G. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 2020, 116, 231103. [Google Scholar] [CrossRef]
- Cheung, W.; Patel, M.; Ma, Y.; Chen, Y.; Xie, Q.; Lockard, J.V.; Gao, Y.; He, H. π-Plasmon absorption of carbon nanotubes for the selective and sensitive detection of Fe3+ ions. Chem. Sci. 2016, 7, 5192–5199. [Google Scholar] [CrossRef]
- Shandakov, S.D.; Lomakin, M.V.; Nasibulin, A.G. The effect of the environment on the electronic properties of single-walled carbon nanotubes. Tech. Phys. Lett. 2016, 42, 1071–1075. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102. [Google Scholar] [CrossRef]
- Alekseeva, A.; Krasnikov, D.V.; Livshits, G.B.; Romanov, S.A.; Popov, Z.I.; Varlamova, L.A.; Sukhanova, E.V.; Klimovich, A.S.; Sorokin, P.B.; Savilov, S.V.; et al. Films enriched with semiconducting single-walled carbon nanotubes by aerosol N2O etching. Carbon 2023, 212, 118094. [Google Scholar] [CrossRef]
- Kanclíř, V.; Václavík, J.; Žídek, K. Precision of silicon oxynitride refractive-index profile retrieval using optical characterization. Acta Phys. Pol. A 2021, 140, 215–221. [Google Scholar] [CrossRef]
- Shi, Y.; He, L.; Guang, F.; Li, L.; Xin, Z.; Liu, R. A review: Preparation, performance, and applications of silicon oxynitride film. Micromachines 2019, 10, 552. [Google Scholar] [CrossRef]
- Kalnitsky, A.; Tay, S.P.; Ellul, J.P.; Chongsawangvirod, S.; Andrews, J.W.; Irene, E.A. Measurements and modeling of thin silicon dioxide films on silicon. J. Electrochem. Soc. 1990, 137, 234–238. [Google Scholar] [CrossRef]
- Montecchi, M.; Montereali, R.M.; Nichelatti, E. Reflectance and transmittance of a slightly inhomogeneous thin film bounded by rough, unparallel interfaces. Thin Solid Films 2001, 396, 264–275. [Google Scholar] [CrossRef]
- Akaoğlu, B.; Atılgan, I.; Katırcıoğlu, B. Correlation between optical path modulations and transmittance spectra of a-Si:H thin films. Appl. Opt. 2000, 39, 1611–1616. [Google Scholar] [CrossRef] [PubMed]
- Morlier, A.; Cros, S.; Garandet, J.-P.; Alberola, N. Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates. Thin Solid Films 2014, 550, 85–89. [Google Scholar] [CrossRef]
- De Nicola, F.; Hines, P.; De Crescenzi, M.; Motta, N. Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings. Carbon 2016, 108, 262–267. [Google Scholar] [CrossRef]
- Chiang, K.-T.; Lin, S.-H.; Ye, Y.-Z.; Zeng, B.-H.; Cheng, Y.-L.; Lee, R.-H.; Lin, K.-Y.A.; Yang, H. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays. J. Colloid Interface Sci. 2023, 650, 81–93. [Google Scholar] [CrossRef]
- Boulanger, N.; Barbero, D.R. Nanostructured networks of single wall carbon nanotubes for highly transparent, conductive, and anti-reflective flexible electrodes. Appl. Phys. Lett. 2013, 103, 021116. [Google Scholar] [CrossRef]
- Barletta, M.; Tagliaferri, V.; Gisario, A.; Venettacci, S. Progressive and constant load scratch testing of single- and multi-layered composite coatings. Tribol. Int. 2013, 64, 39–52. [Google Scholar] [CrossRef]
- Othman, M.; Bushroa, A.; Abdullah, W.N.R. Evaluation techniques and improvements of adhesion strength for TiN coating in tool applications: A review. J. Adhes. Sci. Technol. 2015, 29, 569–591. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, H. A State-of-the-art overview—Recent development in low friction and wear-resistant coatings and surfaces for high-temperature forming tools. Manuf. Rev. 2014, 1, 24. [Google Scholar] [CrossRef]
Sample | Aging | d1, mm | n355 | n633 | k355 | d2, mm | n355 | n633 | k355 | R2 |
---|---|---|---|---|---|---|---|---|---|---|
Uncured PHPS | 1 day | 673 | 1.61 | 1.56 | 0.08 | 0.99 | ||||
Thermally-cured SiOxNy | 1 day | 625 | 1.60 | 1.56 | 0.09 | 0.99 | ||||
1.5 months | 508 | 1.54 | 1.49 | 0 | 44.2 | 1.51 | 1.47 | 0 | 0.98 | |
3.5 months | 598 | 1.51 | 1.49 | 0.06 | 0.99 | |||||
13 months | 507 | 1.50 | 1.46 | 0 | 0.99 | |||||
UV-cured SiOxNy | 1 day | 571 | 1.58 | 1.55 | 0.17 | 200 | 1.49 | 1.46 | 0.15 | 0.96 |
1.5 months | 752 | 1.49 | 1.47 | 0 | 0.99 | |||||
3.5 months | 613 | 1.50 | 1.46 | 0.02 | 1 | |||||
13 months | 598 | 1.49 | 1.47 | 0 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmagina, E.; Antonov, M.; Kasikov, A.; Volobujeva, O.; Khabushev, E.M.; Kallio, T.; Bereznev, S. Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiOxNy Composites. Nanomaterials 2024, 14, 1806. https://doi.org/10.3390/nano14221806
Shmagina E, Antonov M, Kasikov A, Volobujeva O, Khabushev EM, Kallio T, Bereznev S. Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiOxNy Composites. Nanomaterials. 2024; 14(22):1806. https://doi.org/10.3390/nano14221806
Chicago/Turabian StyleShmagina, Elizaveta, Maksim Antonov, Aarne Kasikov, Olga Volobujeva, Eldar M. Khabushev, Tanja Kallio, and Sergei Bereznev. 2024. "Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiOxNy Composites" Nanomaterials 14, no. 22: 1806. https://doi.org/10.3390/nano14221806
APA StyleShmagina, E., Antonov, M., Kasikov, A., Volobujeva, O., Khabushev, E. M., Kallio, T., & Bereznev, S. (2024). Structural, Mechanical, and Optical Properties of Laminate-Type Thin Film SWCNT/SiOxNy Composites. Nanomaterials, 14(22), 1806. https://doi.org/10.3390/nano14221806