Integrated Ozonation Ni-NiO/Carbon/g-C3N4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Catalysts
2.2.1. Synthesis of g-C3N4
2.2.2. Synthesis of NiO
2.2.3. Synthesis of Ni-NiO/C/g-C3N4
2.2.4. Characterization of Photocatalysts
2.2.5. Photocatalytic Ozonation Studies
3. Results and Discussion
3.1. Characterization of Catalysts
3.2. Optical Characterization of Catalysts
3.3. Degradation of CR and ARS
3.3.1. Photocatalytic and Ozonation Studies
3.3.2. Effect of pH
3.3.3. Effect of Contact Time
3.3.4. Effect of Initial Concentration
3.3.5. Comparison of Efficiency with Literature
3.4. Treatment of Real Industrial Wastewater
3.5. Catalyst Stability Study
3.6. Degradation Mechanisms of CR and ARS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhavya, R.; Elango, L. Ant-Inspired Metaheuristic Algorithms for Combinatorial Optimization Problems in Water Resources Management. Water 2023, 15, 1712. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Textile Dyes Market Size Global Report, 2022–2030. Available online: https://polarismarketresearch.com (accessed on 10 January 2023).
- Available online: https://www.fortunebusinessinsights.com/food-colors-market-102644 (accessed on 10 January 2023).
- Shrivastava, V.; Ali, I.; Marjub, M.M.; Rene, E.R.; Soto, A.M. Wastewater in the food industry: Treatment technologies and reuse potential. Chemosphere 2022, 8, 133553. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, R.N.; Lakshmipraba, J. Persistent Organic Pollutants (Part I): 9 The “Dirty Dozen”–Sources and Adverse Effects. In Organic Pollutants; Springer: Cham, Switzerland, 2022; pp. 1–27. [Google Scholar]
- Grossman, A.D.; Belete, Y.Z.; Boussiba, S.; Yogev, U.; Posten, C.; Tena, F.O.; Thomsen, L.; Wang, S.; Gross, A.; Leu, S.; et al. Advanced near-zero waste treatment of food processing wastewater with water, carbon, and nutrient recovery. Sci. Total Environ. 2021, 779, 146373. [Google Scholar] [CrossRef]
- Siddique, N.; Din, M.I.; Khalid, R.; Hussain, Z. A comprehensive review on the photocatalysis of Congo red dye for wastewater treatment. Rev. Chem. Eng. 2023. [Google Scholar] [CrossRef]
- Kamarehie, B.; Jafari, A.; Ghaderpoori, M.; Amin Karami, M.; Mousavi, K.; Ghaderpoury, A. Catalytic ozonation process using PAC/γ-Fe2O3 to Alizarin Red S degradation from aqueous solutions: A batch study. Chem. Eng. Commun. 2019, 206, 898–908. [Google Scholar] [CrossRef]
- Abou-Gamra, Z.M. Kinetics of decolorization of Alizarin Red S in aqueous media by Fenton-like mechanism. Eur. Chem. Bull. 2014, 3, 108–112. [Google Scholar]
- Hafezi, F.; Karami, M.A.; Jafari, A.; Ghaderpoori, M.; Bazdar, M.; Razipour, E. Study of efficiency of photochemical oxidation process with UV/peroxidisulfate for removal of Alizarin Red S from aqueous solutions. J. Community Health Res. 2016, 10, 12–22. [Google Scholar]
- Roopaei, H.; Zohdi, A.R.; Abbasi, Z.; Bazrafkan, M. Preparation of new photocatalyst for removal of alizarin red-S from aqueous solution. Indian J. Sci. Technol. 2014, 7, 1882–1887. [Google Scholar] [CrossRef]
- Mecha, A.C.; Onyango, M.; Ochieng, A.; Fourie, C.J.; Momba, M.N. Synergistic effect of UV–vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: A comparative study. J. Catal. 2016, 341, 116–125. [Google Scholar] [CrossRef]
- Silva, D.B.; Cruz-Alcalde, A.; Sans, C.; Gimenez, J.; Esplugas, S. Performance and kinetic modelling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters. Appl. Catal. B Environ. 2019, 249, 211–217. [Google Scholar] [CrossRef]
- Kang, W.; Chen, S.; Yu, H.; Xu, T.; Wu, S.; Wang, X.; Lu, N.; Quan, X.; Liang, H. Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor. J. Hazard. Mater. 2021, 405, 124277. [Google Scholar] [CrossRef]
- Nobakht, A.R.; Rezaei, M.; Alavi, S.M.; Akbari, E.; Varbar, M.; Hafezi-Bakhtiari, J. CO2 methanation over NiO catalysts supported on CaO–Al2O3: Effect of CaO: Al2O3 molar ratio and nickel loading. Int. J. Hydrogen Energy 2023, 48, 38664–38675. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Zhang, Z.; Chen, M.; Jiang, Z.; Shangguan, W. Morphology-modulated rambutan-like hollow NiO catalyst for plasma-coupled benzene removal: Enriched O species and synergistic effects. Sep. Purif. Technol. 2023, 306, 122621. [Google Scholar] [CrossRef]
- Mochizuki, C.; Inomata, Y.; Yasumura, S.; Lin, M.; Taketoshi, A.; Honma, T.; Murayama, T. Defective NiO as a stabilizer for Au single-atom catalysts. ACS Catal. 2022, 12, 6149–6158. [Google Scholar] [CrossRef]
- Abdelbaki, Y.; de Arriba, A.; Issaadi, R.; Sánchez-Tovar, R.; Solsona, B.; Nieto, J.M.L. Optimization of the performance of bulk NiO catalyst in the oxidative dehydrogenation of ethane by tuning the synthesis parameters. Fuel Process. Technol. 2022, 229, 107182. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron. 2018, 29, 1719–1747. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, Z.; He, Y.; Li, J.; Li, K.; Jiang, Y.; Xu, X.; Yuan, Y.; Lin, K. In situfabrication of hierarchically porous g-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl. Catal. B Environ. 2018, 236, 64–75. [Google Scholar] [CrossRef]
- Bhowmik, S.; Phukan, S.J.; Sah, N.K.; Roy, M.; Garai, S.; Iyer, P.K. Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO2. ACS Appl. Nano Mater. 2021, 4, 12845–12890. [Google Scholar]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Singh, P.; Yadav, R.K.; Kumar, K.; Lee, Y.; Gupta, A.K.; Kumar, K.; Yadav, B.C.; Singh, S.N.; Dwivedi, D.K.; Nam, S.-H.; et al. Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: The regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catal. Sci. Technol. 2021, 11, 6401–6410. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Wang, J.; Li, Y.; Zhang, G. Novel Z-scheme AgI/Sb2WO6 heterostructure for efficient photocatalytic degradation of organic pollutants under visible light: Interfacial electron transfer pathway, DFT calculation and mechanism unveiling. Chemosphere 2023, 311, 137000. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, P.; Jamdar, M.; Mahdi, M.A.; Abdulsahib, W.K.; Jasim, L.S.; Yousefi, S.R.; Salavati-Niasari, M. Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab. J. Chem. 2023, 16, 104579. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Vidyasagar, D.; Ambadi, L.N.; Bak, N.H.; Kim, S.G.; Kim, M.D. UV light activated g-C3N4 nanoribbons coated surface acoustic wave sensor for high performance sub-ppb level NO2 detection at room temperature. Sens. Actuators B Chem. 2023, 394, 134471. [Google Scholar] [CrossRef]
- Chen, D.; Wang, K.; Ren, T.; Ding, H.; Zhu, Y. Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans. 2014, 43, 13105–13114. [Google Scholar] [CrossRef]
- Fatimah, I.; Sulistyowati, R.Z.; Wijayana, A.; Purwiandono, G.; Sagadevan, S. Z-scheme NiO/g-C3N4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation. Heliyon 2023, 9, e16232. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fung-luen, K.; Dickon, H.L. Synthesis of a biomorphic molybdenum trioxide templated from paper. J. Am. Ceram. Soc. 2008, 91, 1350–1353. [Google Scholar] [CrossRef]
- Li, J.; Ng, D.H.; Song, P.; Song, Y.; Kong, C.; Liu, S. Synthesis of hierarchically porous Cu–Ni/C composite catalysts from tissue paper and their catalytic activity for the degradation of triphenylmethane dye in the microwave induced catalytic oxidation (MICO) process. Mater. Res. Bull. 2015, 64, 236–244. [Google Scholar] [CrossRef]
- Gul, T.; Ahmad, S.; Khan, I.; Khan, I.; Almehmadi, M.; Alsaiari, A.A.; Saeed, K. Photodegradation of orange II dye using pn junction NiO/TiO2 composite, and assessment of its biological activities. J. Saudi Chem. Soc. 2023, 27, 101654. [Google Scholar] [CrossRef]
- Moseenkov, S.I.; Kuznetsov, V.L.; Zolotarev, N.A.; Kolesov, B.A.; Prosvirin, I.P.; Ishchenko, A.V.; Zavorin, A.V. Investigation of amorphous carbon in nanostructured carbon materials (A Comparative Study by TEM, XPS, Raman Spectroscopy and XRD). Materials 2023, 16, 1112. [Google Scholar] [CrossRef]
- Zheng, Y.; Qin, M.; Yu, X.; Yao, H.; Zhang, W.; Xie, G.; Guo, X. Constructing Ru@C3N4/Cu Tandem Electrocatalyst with Dual-Active Sites for Enhanced Nitrate Electroreduction to Ammonia. Small 2023, 19, 2302266. [Google Scholar] [CrossRef]
- Baig, U.; AbuMousa, R.A.; Ansari, M.A.; Gondal, M.A.; Dastageer, M.A. Pulsed laser-assisted synthesis of nano nickel (ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications. Nanotechnol. Rev. 2022, 11, 3053–3062. [Google Scholar] [CrossRef]
- Zhang, C.; Du, R.; Martí-Sánchez, S.; Xiao, K.; Yang, D.; Zhang, C.; Cabot, A. Tubular C3N4 Nanotubes as Metal-Free Sulfur Hosts toward Stable Lithium–Sulfur Batteries. Energies 2023, 16, 4545. [Google Scholar] [CrossRef]
- Niculescu, M.; Budrugeac, P. Structural characterization of nickel oxide obtained by thermal decomposition of polynuclear coordination compound [Ni2(OH) 2(H3CCH(OH)COO-)2(H 2O)2·0.5H2O. Rev. Roum. Chim. 2013, 58, 381–386. [Google Scholar]
- Gayathri, M.; Kumar, D.R.; Satheeshkumar, E. Enhanced visible-light-driven photocatalytic and dielectric properties of inorganic–organic hybrid (NiO-g-C3N4) nanocomposite for degradation of rhodamine blue. J. Mater. Sci. Mater. Electron. 2022, 33, 10965–10976. [Google Scholar] [CrossRef]
- Jiang, S.; Mao, M.M.; Pang, M.J.; Yang, H.; Wang, R.W.; Ning, L.I.; Zhao, J.G. Preparation and performance of a graphene-(Ni-NiO)-C hybrid as the anode of a lithium-ion battery. New Carbon Mater. 2023, 38, 356–365. [Google Scholar] [CrossRef]
- Maged, S.; El-Borady, O.M.; El-Hosainy, H. Efficient photocatalytic reduction of p-nitrophenol under visible light irradiation based on Ag NPs loaded brown 2D g-C3N4/g-C3N4 QDs nanocomposite. Environ. Sci. Pollut. Res. 2023, 30, 117909–117922. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.K.; Elhgrasi, A.M.; Ali, O.I. Facile synthesis of mesoporous nano Ni/NiO and its synergistic role as super adsorbent and photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. 2022, 29, 64792–64806. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, N.; Hughes, J.P.; Adarakatti, P.S.; Manjunatha, C.; Samuel, J.R.; Ashoka, S.; Craig, E.B. Facile synthesis of Ni/NiO nanocomposites: The effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Adv. 2021, 11, 14654–14664. [Google Scholar]
- Motahari, F.; Mozdianfard, M.R.; Soofivand, F.; Salavati-Niasari, M. NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 2014, 4, 27654–27660. [Google Scholar] [CrossRef]
- Hosny, N.M. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 2011, 30, 470–476. [Google Scholar] [CrossRef]
- Akbari, S.; Ghanbari, F.; Almasi, H.; Asgari, G. Investigation into catalytic potential of marble powder in catalytic ozonation of reactive black 5. J. Health Field 2017, 2, 10–17. [Google Scholar]
- Lim, S.; Shi, J.L.; von Gunten, U.; McCurry, D.L. Ozonation of organic compounds in water and wastewater: A critical review. Water Res. 2022, 213, 118053. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Said, A.; Ali, F.; Raziq, F.; Ali, Z.; Bilal, M.; Reinert, L.; Begum, T.; Iqbal, H.M. Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: Development, characterization, and photocatalytic performance. Water Air Soil Pollut. 2020, 231, 50. [Google Scholar] [CrossRef]
- Saeed, K.; Zada, N.; Khan, I. Photocatalytic degradation of alizarin red dye in aqueous medium using carbon nanotubes/Cu–Ti oxide composites. Sep. Sci. Technol. 2019, 54, 2729–2737. [Google Scholar] [CrossRef]
- Ling, Y.; Liu, H.; Li, B.; Zhang, B.; Wu, Y.; Hu, H.; Huang, S. Efficient photocatalytic ozonation of azithromycin by three-dimensional g-C3N4 nanosheet loaded magnetic Fe-MCM-48 under simulated solar light. Appl. Catal. B Environ. 2023, 324, 122208. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Issa, M.A.; Ammar, S.H.; Ebrahim, S.E.; Khadim, H.J.; Okab, A.A. Photocatalytic degradation of Congo red dye using magnetic silica-coated Ag2WO4/Ag2S as Type I heterojunction photocatalyst: Stability and mechanisms studies. Mater. Sci. Semicond. Proc. 2023, 153, 107151. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Okab, A.A.; Graimed, B.H.; Issa, M.A.; Ammar, S.H. Photocatalytic destruction of Congo red dye in wastewater using a novel Ag2WO4/Bi2S3 nanocomposite decorated g-C3N4 nanosheet as ternary S-scheme heterojunction: Improving the charge transfer efficiency. Diam. Relat. Mater. 2023, 133, 109711. [Google Scholar] [CrossRef]
- Abumousa, R.A. MgO@ ZrO2@g-C3N4 composite for efficient photodegradation of alizarin red dye. Inorg. Chem. Commun. 2023, 155, 111086. [Google Scholar] [CrossRef]
- Tapalad, T.; Neramittagapong, A.; Neramittagapong, S.; Boonmee, M. Degradation of Congo red dye by ozonation. Chiang Mai J. Sci. 2008, 35, 63–68. [Google Scholar]
- Columbus, S.; Hammouche, J.; Ramachandran, K.; Daoudi, K.; Gaidi, M. Assessing the efficiency of photocatalytic removal of alizarin red using copper doped zinc oxide nanostructures by combining SERS optical detection. J. Photochem. Photobiol. 2022, 432, 114123. [Google Scholar] [CrossRef]
- Mehralipour, J.; Darvishali, S.; Bagheri, S.; Kermani, M. Photocatalytic-ozonation process in oxytetracycline degradation in aqueous solution: Composite characterization, optimization, energy consumption, and by-products. Sci. Rep. 2023, 13, 11113. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.N.; Leu, J.H.; Nguyen, V.N. The Combination of Anaerobic Digestion and Electro-Oxidation for Efficient COD Removal in Beverage Wastewater: Investigation of Electrolytic Cells. Sustainability 2023, 15, 5551. [Google Scholar] [CrossRef]
- Güneş-Durak, S.; Ciggin, A.S.; Tüfekci, N.E. Fabrication, characterization and treatment of polymeric membranes with submerged membrane bioreactor system: Fruit juice industry wastewater. Int. J. Environ. Sci. Technol. 2023, 20, 6419–6432. [Google Scholar] [CrossRef]
- Amor, C.; Lucas, M.S.; Pirra, A.J.; Peres, J.A. Treatment of concentrated fruit juice wastewater by the combination of biological and chemical processes. J. Environ. Sci. Health Part A 2012, 47, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.; Gun, M.; Akarsu, C.; Bilici, Z.; Dizge, N. Treatment of turnip juice wastewater by electrocoagulation/electroflotation and electrooxidation with aluminum, iron, boron-doped diamond, and graphite electrodes. Int. J. Environ. Sci. Technol. 2023, 20, 53–62. [Google Scholar] [CrossRef]
- Akhundi, A.; Yangjeh, A.H. A simple large-scale method for preparation of g-C3N4/SnO2 nanocomposite as visible-light driven for degradation of an organic pollutant. Mater. Express 2019, 5, 309–317. [Google Scholar] [CrossRef]
- Gayathri, M.; Sakar, M.; Satheeshkumar, E.; Sundaravadivel, E. Insights into the mechanism of ZnO/g-C3N4 nanocomposites toward photocatalytic degradation of multiple organic dyes. J. Mater. Sci. Mater. Electron. 2022, 33, 9347–9357. [Google Scholar] [CrossRef]
- Nöthe, T.; Fahlenkamp, H.; Sonntag, C.V. Ozonation of wastewater: Rate of ozone consumption and hydroxyl radical yield. Environ. Sci. Technol. 2009, 43, 5990–5995. [Google Scholar] [CrossRef]
- Wert, E.C.; Rosario-Ortiz, F.L.; Drury, D.D.; Snyder, S.A. Formation of oxidation byproducts from ozonation of wastewater. Water Res. 2007, 41, 1481–1490. [Google Scholar] [CrossRef]
- Pang, C.K.; Joseph, C.G.; Farm, Y.Y.; Gansau, J.A.; Teo, S.H.; Taufiq-Yap, Y.H.; Liew, R.K. Metal ferrites nanoparticles for catalytic and photocatalytic ozonation in wastewater treatment: A review. Environ. Chem. Lett. 2023, 21, 2953–2993. [Google Scholar] [CrossRef]
- Barakat, M.A.; Anjum, M.; Kumar, R.; Alafif, Z.O.; Oves, M.; Ansari, M.O. Design of ternary Ni(OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. J. Clean. Prod. 2020, 258, 120588. [Google Scholar] [CrossRef]
Degradation Method | Pollutant and (% Efficiency) | Conditions | Refs. | |||||
---|---|---|---|---|---|---|---|---|
Catalyst | pH | Conc. (mg/L) | * LS | ** CT (min) | *** OR | |||
Photocatalysis | CR (99.5%) | Ag2WO4/Ag2S | - | 20 | Vis | - | - | [51] |
Photocatalysis | CR (98%) | Ag2WO4/Bi2S3 | - | Vis | 60 | - | [52] | |
Photocatalysis | ARS (92%) | MgO@ZrO2@g-C3N4 | 7.0 | 10 | Vis | 60 | - | [53] |
Photocatalysis | CR (100%) ARS (40%) | NiO/C/g-C3N4 | 5.0 9.0 | 20 | Vis | 180 | - | This study |
Ozonation | CR (85%) | - | 10.0 | 25 | - | 60 | 36 mg/h | [54] |
Ozonation | ARS (40%) | - | 9.0 | 100 | - | 10 | 5 g/h | [9] |
Ozonation | CR (100%) ARS (100%) | - | 5.0 9.0 | 20 | - | 120 | 20 g/h | This study |
Photocatalytic ozonation | ARS (40%) | PAC/γ-Fe2O3/O3 | 9.0 | 100 | UV | 10 | 5 g/h | [9] |
Photocatalytic ozonation | ARS (92%) | Copper-doped zinc oxide/Ozon (ZCO)/O3 | - | - | UV-Vis | 160 | - | [55] |
Photocatalytic ozonation | CR (100%) ARS (100%) | NiO/C/g-C3N4/O3 | 5.0 9.0 | 20 | Vis | 5 and 40 | 20 g/h | This study |
S. No. | Parameter | Unit | Results | Standard Limit (* MEWA, KSA) |
---|---|---|---|---|
1 | pH | pH | 4 | 5–10 |
2 | Total dissolved solids (TDS) | mg/L | 172 | 3000 |
3 | Dissolved oxygen (DO) | mg/L | 0.3 | NA ** |
4 | Total solid (TS) | mg/L | 3 | NA |
5 | Total volatile solid (TVS) | mg/L | 0.16 | NA |
6 | Total suspended solid (TSS) | mg/L | 0.05 | 600 |
7 | Chemical oxygen demand (COD) | mg/L | 4700 | 1000 |
8 | Total organic carbon (TOC) | mg/L | 577 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhato, A.Y.; Kumar, R.; Barakat, M.A. Integrated Ozonation Ni-NiO/Carbon/g-C3N4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light. Nanomaterials 2024, 14, 190. https://doi.org/10.3390/nano14020190
Alhato AY, Kumar R, Barakat MA. Integrated Ozonation Ni-NiO/Carbon/g-C3N4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light. Nanomaterials. 2024; 14(2):190. https://doi.org/10.3390/nano14020190
Chicago/Turabian StyleAlhato, Abdullah Y., Rajeev Kumar, and Mohammad A. Barakat. 2024. "Integrated Ozonation Ni-NiO/Carbon/g-C3N4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light" Nanomaterials 14, no. 2: 190. https://doi.org/10.3390/nano14020190
APA StyleAlhato, A. Y., Kumar, R., & Barakat, M. A. (2024). Integrated Ozonation Ni-NiO/Carbon/g-C3N4 Nanocomposite-Mediated Catalytic Decomposition of Organic Contaminants in Wastewater under Visible Light. Nanomaterials, 14(2), 190. https://doi.org/10.3390/nano14020190