Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobsson, T.J. Photoelectrochemical water splitting: An idea heading towards obsolescence. Energy Environ. Sci. 2018, 11, 1977–1979. [Google Scholar] [CrossRef]
- Seo, D.-B.; Trung, T.N.; Kim, D.-O.; Duc, D.V.; Hong, S.; Sohn, Y.; Jeong, J.-R.; Kim, E.-T. Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 2020, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Horani, F.; Lifshitz, E. Unraveling the growth mechanism forming stable γ-In2S3 and β-In2S3 colloidal nanoplatelets. Chem. Mater. 2019, 31, 1784–1793. [Google Scholar] [CrossRef]
- Lee, B.R.; Jang, H.W. β-In2S3 as water splitting photoanodes: Promise and challenges. Electron. Mater. Lett. 2021, 17, 119–135. [Google Scholar] [CrossRef]
- Li, M.; Tu, X.; Su, Y.; Lu, J.; Hu, J.; Cai, B.; Zhou, Z.; Yang, Z.; Zhang, Y. Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 2018, 10, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wu, J.; Lv, B.; Wei, J.; Huang, R.; Wang, X.; Wang, W. NiO nanodot decorated In2S3 nanosheet arrays photoanode toward low-onset-potential photoelectrochemical hydrogen evolution. Sol. Energy 2024, 273, 112547. [Google Scholar] [CrossRef]
- Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726. [Google Scholar] [CrossRef]
- Frey, G.L.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. Optical-absorption spectra of inorganic fullerene like MS2 (M = Mo, W). Phys. Rev. B 1998, 57, 6666. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mater. 2012, 22, 1385. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.N.; Seo, D.B.; Quang, N.D.; Kim, D.; Kim, E.T. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 2018, 260, 150–156. [Google Scholar] [CrossRef]
- Singh, J.; Soni, R.K. Enhanced sunlight driven photocatalytic activity of In2S3 nanosheets functionalized MoS2 nanoflowers heterostructures. Sci. Rep. 2021, 11, 15352. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jiang, Y.; Yang, J.; Hao, M.; Tong, Z.; Jianga, L.; Wu, Z. MoS2 nanodot decorated In2S3 nanoplates: A novel heterojunction with enhanced photoelectrochemical performance. Chem. Commun. 2016, 52, 1867–1870. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Shan, F.; Jiang, X.; Ji, J.; Wang, F. One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with mesh-shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction. Appl. Surf. Sci. 2018, 435, 822–831. [Google Scholar] [CrossRef]
- Timoumi, A.; Belhadj, W.; Alamri, S.N.; Turkestani, M.K.A. Experimental studies and new theoretical modeling on the properties of In2S3 thin films. Opt. Mater. 2021, 118, 111238. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.M.; Al-Shahry, M.; Ingler, W.B., Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245. [Google Scholar] [CrossRef] [PubMed]
- Bernède, J.C.; Barreau, N.; Marsillac, S.; Assmann, L. Band alignment at β-In2S3/TCO interface. Appl. Surf. Sci. 2002, 195, 222–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayarathna, R.A.; Heo, J.-H.; Kim, E.-T. Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets. Nanomaterials 2024, 14, 1628. https://doi.org/10.3390/nano14201628
Jayarathna RA, Heo J-H, Kim E-T. Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets. Nanomaterials. 2024; 14(20):1628. https://doi.org/10.3390/nano14201628
Chicago/Turabian StyleJayarathna, Roshani Awanthika, Jun-Ho Heo, and Eui-Tae Kim. 2024. "Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets" Nanomaterials 14, no. 20: 1628. https://doi.org/10.3390/nano14201628
APA StyleJayarathna, R. A., Heo, J. -H., & Kim, E. -T. (2024). Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets. Nanomaterials, 14(20), 1628. https://doi.org/10.3390/nano14201628