Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Targeted Microsphere-Loaded Triple-Drug System
2.3. Characterization of Targeted Microsphere-Loaded Triple-Drug System
2.4. Stability Analysis of PTX@PHBHHx-ARP/siRNAGEM
2.5. In Vitro Drug Release of PTX@PHBHHx-ARP/siRNAGEM
2.6. Cell Cultures
2.7. Cellular Uptake of PTX@PHBHHx-ARP/siRNAGEM
2.8. Evaluation of the In Vitro Cytotoxicity of PTX@PHBHHx-ARP/siRNAGEM
2.9. Western Blot Analysis
2.10. Flow Cytometry Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Targeted Microsphere-Loaded Triple-Drug System
3.2. Characterization of Targeted Microsphere-Loaded Triple-Drug System
3.3. Stability Analysis of PTX@PHBHHx-ARP/siRNAGEM
3.4. In Vitro Drug Release of PTX@PHBHHx-ARP/siRNAGEM
3.5. Cellular Uptake of PTX@PHBHHx-ARP/siRNAGEM
3.6. Evaluation of the In Vitro Cytotoxicity of PTX@PHBHHx-ARP/siRNAGEM
3.7. Western Blot Analysis
3.8. Flow Cytometry Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, S.X.; Chen, M.Q.; Li, S.Y.; Geng, Z.J.; Jin, Y.; Liu, D. Natural Products Treat Colorectal Cancer by Regulating miRNA. Pharmaceuticals 2023, 16, 1122. [Google Scholar] [CrossRef]
- Ding, P.L.; Gao, Y.; Wang, J.M.; Xiang, H.J.; Zhang, C.Y.; Wang, L.; Ji, G.; Wu, T. Progress and challenges of multidrug resistance proteins in diseases. Am. J. Cancer Res. 2022, 12, 4483. [Google Scholar] [PubMed]
- Xiao, Y.; Wang, S.; Zong, Q.Y.; Yin, Z.N. Co-delivery of Metformin and Paclitaxel Folate-Modified pH-Sensitive Micelles for Enhanced Anti-tumor Efficacy. Aaps PharmSciTech 2018, 19, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.Q.; Wu, R.P.; Huang, X.B.; Wang, X.L.; Zhong, D.T.; Huang, C.Y.; Song, J.T. Paclitaxel, oxaliplatin, 5-fluorouracil and leucovorin combination chemotherapy in patients with recurrent or metastatic gastric cancer. Tumori J. 2018, 104, 22–29. [Google Scholar] [CrossRef]
- Tardi, P.G.; Gallagher, R.C.; Johnstone, S.; Harasym, N.; Webb, M.; Bally, M.B.; Mayer, L.D. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim. Biophys. Acta (BBA) Biomembranes. 2007, 1768, 678–687. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Gao, H.L.; Liu, Y.Y.; Zhang, Q.Y.; Ran, R.; Zhang, Z.R.; He, Q. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Deliv. 2016, 23, 1130–1143. [Google Scholar] [CrossRef]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef]
- Harguindey, A.; Domaille, D.W.; Fairbanks, B.D.; Wagner, J.; Bowman, C.N.; Cha, J.N. Synthesis and Assembly of Click-Nucleic-Acid-Containing PEG-PLGA Nanoparticles for DNA Delivery. Adv. Mater. 2017, 29, 1700743. [Google Scholar] [CrossRef] [PubMed]
- Mou, Q.B.; Ma, Y.; Ding, F.; Gao, X.H.; Yan, D.Y.; Zhu, X.Y.; Zhang, C. Two-in-One Chemogene Assembled from Drug-Integrated Antisense Oligonucleotides to Reverse Chemoresistance. J. Am. Chem. Soc. 2019, 141, 6955–6966. [Google Scholar] [CrossRef]
- Zhu, L.J.; Guo, Y.Y.; Qian, Q.H.; Yan, D.Y.; Li, Y.H.; Zhu, X.Y.; Zhang, C. Carrier-Free Delivery of Precise Drug-Chemogene Conjugates for Synergistic Treatment of Drug-Resistant Cancer. Angew. Chem. Int. Ed. 2020, 59, 17944–17950. [Google Scholar] [CrossRef]
- Simonenko, V.; Lu, X.Y.; Roesch, E.; Mutisya, D.; Shao, C.B.; Sun, Q.; Patterson-Orazem, A.; McNair, M.; Shanmuganathan, A.; Lu, P.; et al. A novel siRNA-gemcitabine construct as a potential therapeutic for treatment of pancreatic cancer. NAR Cancer 2020, 2, zcaa016. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Zhang, J.; Guo, Y.Y.; Wang, P.; Su, Y.; Jin, X.; Zhu, X.Y.; Zhang, C. Drug-grafted DNA as a novel chemogene for targeted combinatorial cancer therapy. Exploration 2022, 2, 20210172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Shishatskaya, E.I.; Volova, T.G.; da Silva, L.F.; Chen, G.Q. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater. Sci. Eng. C 2018, 86, 144–150. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zhang, J.Y. Microbial polyhydroxyalkanoates as medical implant biomaterials. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Kalia, V.C. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017, 57, 261–269. [Google Scholar] [CrossRef]
- Zhang, F.H.; Zhang, C.; Fu, S.Q.; Liu, H.D.; Han, M.N.; Fan, X.Y.; Zhang, H.L.; Li, W. Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery. Nanomaterials 2022, 12, 3024. [Google Scholar] [CrossRef]
- Ståhl, S.; Gräslund, T.; Karlström, A.E.; Frejd, F.Y.; Nygren, P.Å.; Löfblom, J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol. 2017, 35, 691–712. [Google Scholar] [CrossRef]
- Tolmachev, V.; Orlova, A. Affibody Molecules as Targeting Vectors for PET Imaging. Cancers 2020, 12, 651. [Google Scholar] [CrossRef]
- Lei, X.Y.; Zhong, M.; Feng, L.F.; Zhu, B.Y.; Tang, S.S.; Liao, D.F. siRNA-mediated and gene silencing sensitizes human hepatoblastoma cells to chemotherapeutic drugs. Clin. Exp. Pharmacol. Physiol. 2007, 34, 450–456. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Wang, X.; Yu, J.; Song, Y.B.; Guo, X.J. Enantioseparation and molecular modeling study of five β-adrenergic blockers on Chiralpak IC column. Chirality 2019, 31, 502–512. [Google Scholar] [CrossRef]
- Sun, R.S.; Zheng, R.A.; Zhu, W.L.; Zhou, X.Q.; Liu, L.; Cao, H. Directed Self-Assembly of Heterologously Expressed Hagfish EsTKα and EsTKγ for Functional Hydrogel. Front. Bioeng. Biotechnol. 2022, 10, 960586. [Google Scholar] [CrossRef]
- Arulmozhi, V.; Pandian, K.; Mirunalini, S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf. B 2013, 110, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N. Engl. J. Med. 2017, 377, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Fatma, T. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization. PLoS ONE. 2016, 11, e0158168. [Google Scholar] [CrossRef]
- Zhou, T.; Zhu, B.; Chen, F.; Liu, Y.; Ren, N.; Tang, J.; Ma, X.; Su, Y.; Zhu, X. Micro-/nanofibers prepared via co-assembly of paclitaxel and dextran. Carbohydr. Polym. 2017, 157, 613. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95. [Google Scholar] [CrossRef]
- Tapia-Hernandez, J.A.; Rodriguez-Felix, F.; Juarez-Onofre, J.E.; Ruiz-Cruz, S.; Robles-Garcia, M.A.; Borboa-Flores, J.; Wong-Corral, F.J.; Cinco-Moroyoqui, F.J.; Castro-Enriquez, D.D.; Del-Toro-Sanchez, C.L. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res. Int. 2018, 111, 451. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, S.Q.; Zhang, F.H.; Han, M.N.; Wang, X.M.; Du, J.; Zhang, H.L.; Li, W. Affibody Modified G-quadruplex DNA Micelles Incorporating Polymeric 5-Fluorodeoxyuridine for Targeted Delivery of Curcumin to Enhance Synergetic Therapy of HER2 Positive Gastric Cancer. Nanomaterials 2022, 12, 696. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Zernov, A.L.; Yakovlev, S.G.; Zharkova, I.; Myshkina, V.L.; Mahina, T.K.; Bonartseva, G.A.; Andronova, N.V.; Smirnova, G.B.; Borisova, J.A.; et al. New Poly(3-hydroxybutyrate) Microparticles with Paclitaxel Sustained Release for Intraperitoneal Administration. Anticancer Agents Med. Chem. 2017, 17, 434–441. [Google Scholar] [CrossRef]
- Papaneophytou, C.; Katsipis, G.; Halevas, E.; Pantazaki, A.A. Polyhydroxyalkanoates Applications in Drug Carriers. In Biotechnological Applications of Polyhydroxyalkanoates; Springer: Singapore, 2019; pp. 77–124. [Google Scholar] [CrossRef]
- Barok, M.; Joensuu, H.; Isola, J. Trastuzumab emtansine: Mechanisms of action and drug resistance. Breast Cancer Res. 2014, 16, 209. [Google Scholar] [CrossRef]
- Zhang, F.H.; Yin, J.W.; Zhang, C.; Han, M.N.; Wang, X.M.; Fu, S.Q.; Du, J.; Zhang, H.L.; Li, W. Affibody-Conjugated RALA Polymers Delivering Oligomeric 5-Fluorodeoxyuridine for Targeted Therapy of HER2 Overexpressing Gastric Cancer. Macromol. Biosci. 2020, 20, e2000083. [Google Scholar] [CrossRef] [PubMed]
- Reddy, T.L.; Garikapati, K.R.; Reddy, S.G.; Reddy, B.V.; Yadav, J.S.; Bhadra, U.; Bhadra, M.P. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci. Rep. 2016, 6, 35223. [Google Scholar] [CrossRef]
- Das, A.; Dean, A.; McNulty, M. Third-line re-treatment of advanced pancreatic adenocarcinoma with gemcitabine and nab-paclitaxel. Ann. Oncol. 2019, 30, iv83. [Google Scholar] [CrossRef]
- Bruckheimer, E.M.; Cho, S.H.; Sarkiss, M.; Herrmann, J.; McDonnell, T.J. The Bcl-2 gene family and apoptosis. Adv. Biochem. Eng./Biotechnol. 1998, 62, 75–105. [Google Scholar] [CrossRef] [PubMed]
- Akar, U.; Chaves-Reyez, A.; Barria, M.; Tari, A.; Sanguino, A.; Kondo, Y.; Kondo, S.; Arun, B.; Lopez-Berestein, G.; Ozpolat, B. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 2008, 4, 669–679. [Google Scholar] [CrossRef]
- Shi, X.L.; Dou, Y.H.; Zhou, K.R.; Huo, J.L.; Yang, T.J.; Qin, T.T.; Liu, W.H.; Wang, S.Q.; Yang, D.X.; Chang, L.M.; et al. Targeting the Bcl-2 family and P-glycoprotein reverses paclitaxel resistance in human esophageal carcinoma cell line. Biomed. Pharmacother. 2017, 90, 897–905. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, F.; Zhao, X.H.; Qi, Y.; Zhang, L.; Cao, Y.; Wang, Y.; Wang, Y. Nanocarrier-mediated co-delivery of gemcitabine and Bcl-2 siRNA for pancreatic cancer therapy. Mater. Express 2024, 14, 270–277. [Google Scholar] [CrossRef]
Cell Line | IC50 | |||||||
---|---|---|---|---|---|---|---|---|
PTX (μM) | GEM (μM) | PTX/GEM/siRNA (1:9:170) | PTX@PHBHHx-ARP/siRNAGEM | |||||
PTX (nM) | GEM (nM) | siRNA (μM) | PTX (nM) | GEM (nM) | siRNAGEM (nM) | |||
BT474 | 11.58 ± 0.6 | 82.95 ± 11.8 | 61.10 ± 2.1 | 21.9 ± 18.9 | 4.45 ± 0.3 | 3.63 ± 1.4 | 1.49 ± 0.4 | 30.90 ± 5.55 |
MCF-7 | 10.44 ± 0.8 | 46.44 ± 5.8 | 58.0 ± 7.3 | 23.51 ± 13.4 | 4.60 ± 0.9 | 6.11 ± 1.8 | 2.53 ± 0.6 | 43.75 ± 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, C.; Liu, H.; Fan, X.; Fu, S.; Li, W.; Zhang, H. Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy. Nanomaterials 2024, 14, 1657. https://doi.org/10.3390/nano14201657
Wang S, Zhang C, Liu H, Fan X, Fu S, Li W, Zhang H. Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy. Nanomaterials. 2024; 14(20):1657. https://doi.org/10.3390/nano14201657
Chicago/Turabian StyleWang, Shuo, Chao Zhang, Huandi Liu, Xueyu Fan, Shuangqing Fu, Wei Li, and Honglei Zhang. 2024. "Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy" Nanomaterials 14, no. 20: 1657. https://doi.org/10.3390/nano14201657
APA StyleWang, S., Zhang, C., Liu, H., Fan, X., Fu, S., Li, W., & Zhang, H. (2024). Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy. Nanomaterials, 14(20), 1657. https://doi.org/10.3390/nano14201657