Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis
Abstract
:1. Introduction
2. Materials and Methods
2.1. PLGA-Based NP Synthesis and Florfenicol Encapsulation
2.2. Salmon IgM Purification
2.3. IgM Conjugation to PLGA-Based NPs
2.4. Particle Size and ζ Potential Measurement
2.5. Florfenicol Encapsulation Efficiency Determination
2.6. SHK-1 Cell Line Culture
2.7. Confocal Microscopy
2.8. Bacterial Growth
2.9. Evaluation of the Cytotoxicity Induced by Nanosystem in SHK-1 Cells
2.10. Gentamicin Protection Assay and Quantification of Intracellular Bacterial Load
2.11. Detection of P. salmonis Using Quantitative Polymerase Chain Reaction (qPCR)
2.12. Software and Statistical Analysis
3. Results
3.1. Physicochemical Properties of PLGA-Based Nanosystem
3.2. Florfenicol Encapsulation Efficiency
3.3. IgM-NP Internalization in SHK-1 Cells
3.4. Nanosystem Does Not Induce Cytotoxicity in SHK-1 Cells
3.5. Effect of Nanosystems in Bacterial Load of P. salmonis When Infecting SHK-1 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments—A review. Ocean Coast. Manag. 2016, 119, 244–266. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Fisheries and Aquaculture Division (FAO). The State of World Fisheries and Aquaculture 2024 Blue Transformation in Action; FAO: Rome, Italy, 2024; p. 264. [Google Scholar]
- Yadav, N.K.; Patel, A.B.; Singh, S.K.; Mehta, N.K.; Anand, V.; Lal, J.; Dekari, D.; Devi, N.C. Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: A review. Environ. Sci. Pollut. Res. 2024, 31, 31731–31751. [Google Scholar] [CrossRef]
- Ali, N.; Khan, M.H.; Ali, M.; Sidra; Ahmad, S.; Khan, A.; Nabi, G.; Ali, F.; Bououdina, M.; Kyzas, G.Z. Insight into microplastics in the aquatic ecosystem: Properties, sources, threats and mitigation strategies. Sci. Total Environ. 2024, 913, 169489. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, H.E.; Koehn, J.Z.; Holsman, K.K.; Halpern, B.S. Emerging trends in science and news of climate change threats to and adaptation of aquaculture. Aquaculture 2022, 549, 737812. [Google Scholar] [CrossRef]
- Assefa, A.; Abunna, F. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Vet. Med. Int. 2018, 2018, 5432497. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 2015, 7, 471–496. [Google Scholar] [CrossRef]
- Departamento de Análisis Sectorial (DAS) Gobierno de Chile. Informe Sectorial de Pesca y Acuicultura Consolidado (2021–2022); Subsecretaría de Pesca y Acuicultura: Valparaíso, Chile, 2023. [Google Scholar]
- SERNAPESCA. Informe con Antecedentes Sanitarios de Agua Dulce y mar año 1° Semestre 2023; Departamento de Salud Animal, Subdirección de Acuicultura, Servicio Nacional de Pesca: Valparaíso, Chile, 2023. [Google Scholar]
- Meyer, F.P. Aquaculture disease and health management. J. Anim. Sci. 1991, 69, 4201–4208. [Google Scholar] [CrossRef]
- Asche, F.; Hansen, H.; Tveteras, R.; Tveterås, S. The salmon disease crisis in Chile. Mar. Resour. Econ. 2009, 24, 405–411. [Google Scholar] [CrossRef]
- SERNAPESCA. Informe Sanitario Acuícola año 2012; Unidad de Salud Animal, Subdirección de Acuicultura, Servicio Nacional de Pesca y Acuicultura: Valparaíso, Chile, 2013. [Google Scholar]
- SERNAPESCA. Informe Sanitario Acuícola año 2017; Departamento de Salud Animal, Subdirección de Acuicultura, Servicio Nacional de Pesca y Acuicultura: Valparaíso, Chile, 2018. [Google Scholar]
- SERNAPESCA. Informe Sanitario Acuícola año 2018; Departamento de Salud Animal, Subdirección de Acuicultura, Servicio Nacional de Pesca y Acuicultura: Valparaíso, Chile, 2019. [Google Scholar]
- Marshall, S.H.; Conejeros, P.; Zahr, M.; Olivares, J.; Gomez, F.; Cataldo, P.; Henriquez, V. Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. Vaccine 2007, 25, 2095–2102. [Google Scholar] [CrossRef]
- Fryer, J.L.; Hedrick, R.P. Piscirickettsia salmonis: A Gram-negative intracellular bacterial pathogen of fish. J. Fish Dis. 2003, 26, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Cvitanich, J.D.; Garate, N.O.; Smith, C.E. The isolation of a rickettsial-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J. Fish Dis. 1991, 14, 121–145. [Google Scholar] [CrossRef]
- Branson, E.J.; Nieto-Diaz Muñoz, D. Description of a new disease condition occurring in farmed coho salmon, Oncorhynchus kisutch (Walbaum), in South America. J. Fish Dis. 1991, 14, 147–156. [Google Scholar] [CrossRef]
- Flores-Kossack, C.; Montero, R.; Kollner, B.; Maisey, K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. Fish Shellfish Immunol. 2020, 98, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Maisey, K.; Montero, R.; Christodoulides, M. Vaccines for piscirickettsiosis (salmonid rickettsial septicaemia, SRS): The Chile perspective. Expert Rev. Vaccines 2017, 16, 215–228. [Google Scholar] [CrossRef]
- Rozas, M.; Enriquez, R. Piscirickettsiosis and Piscirickettsia salmonis in fish: A review. J. Fish Dis. 2014, 37, 163–188. [Google Scholar] [CrossRef]
- Evensen, O. Immunization Strategies against Piscirickettsia salmonis Infections: Review of Vaccination Approaches and Modalities and Their Associated Immune Response Profiles. Front. Immunol. 2016, 7, 482. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Evans, J.J.; Arias, C.R. Use of modified live vaccines in aquaculture. J. World Aquac. Soc. 2009, 40, 573–585. [Google Scholar] [CrossRef]
- Oceana. Uso de Antibióticos en la Salmonicultura Chilena: Causas, Efectos y Riesgos Asociados; Oceana: Santiago, Chile, 2018; Available online: https://chile.oceana.org/publicaciones/informes/uso-de-antibioticos-en-la-salmonicultura-chilena-causas-efectos-y-riesgos (accessed on 8 August 2024).
- Ahmad, N.; Joji, R.M.; Shahid, M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front. Cell. Infect. Microbiol. 2022, 12, 1065796. [Google Scholar] [CrossRef]
- SERNAPESCA. Informe sobre uso de antimicrobianos en la salmonicultura nacional. Primer semestre 2021. in Subdirección de Acuicultura, D.D.S. Animal, Editor. 2021, Servicio Nacional de Pesca: Valparaíso. 2021: Valparaiso. p. in Subdirección de Acuicultura, D.D.S. Animal, Edi-in Subdirección de Acuicultura, D.D.S. Animal, Edi. Available online: https://www.sernapesca.cl/app/uploads/2023/10/informe_sobre_uso_de_antimicrobianos_en_la_salmonicultura_nacional_primer_semestre_ano_2021.pdf (accessed on 8 August 2024).
- Park, B.K.; Lim, J.H.; Kim, M.S.; Hwang, Y.H.; Yun, H.I. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine, in dogs. Res. Vet. Sci. 2008, 84, 85–89. [Google Scholar] [CrossRef]
- Wei, C.F.; Shien, J.H.; Chang, S.K.; Chou, C.C. Florfenicol as a modulator enhancing antimicrobial activity: Example using combination with thiamphenicol against Pasteurella multocida. Front. Microbiol. 2016, 7, 389. [Google Scholar] [CrossRef] [PubMed]
- San Martin, B.; Fresno, M.; Cornejo, J.; Godoy, M.; Ibarra, R.; Vidal, R.; Araneda, M.; Anadon, A.; Lapierre, L. Optimization of florfenicol dose against Piscirickettsia salmonis in Salmo salar through PK/PD studies. PLoS ONE 2019, 14, e0215174. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Meng, F.; Cui, Y.; Yin, M.; Ning, H.; Yin, Z.; Chen, L.; Ge, Y.; Liu, S. Growth and cardiovascular development are repressed by florfenicol exposure in early chicken embryos. Poult. Sci. 2020, 99, 2736–2745. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, E.M.; Ekong, P.S.; Okello, E.; Chamchoy, T.; Karle, B.M.; Black, R.A.; Sheedy, D.; ElAshmawy, W.R.; Williams, D.R.; Califano, D.; et al. Epidemiology of antimicrobial resistance (AMR) on California dairies: Descriptive and cluster analyses of AMR phenotype of fecal commensal bacteria isolated from adult cows. PeerJ 2021, 9, e11108. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Moon, D.C.; Mechesso, A.F.; Kang, H.Y.; Kim, S.J.; Song, H.J.; Yoon, S.S.; Lim, S.K. Antimicrobial resistance profiles and macrolide resistance mechanisms of campylobacter coli isolated from pigs and chickens. Microorganisms 2021, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Trif, E.; Cerbu, C.; Astete, C.E.; Libi, S.; Pall, E.; Tripon, S.; Olah, D.; Potârniche, A.V.; Witkowski, L.; Brudască, G.F.; et al. Delivery of florfenicol in veterinary medicine through a PLGA-based nanodelivery system: Improving its performance and overcoming some of its limitations. Vet. Res. Commun. 2023, 48, 259–269. [Google Scholar] [CrossRef]
- Sun, Y.; Bhattacharjee, A.; Reynolds, M.; Li, Y.V. Synthesis and characterizations of gentamicin-loaded poly-lactic-co-glycolic (PLGA) nanoparticles. J. Nanopart. Res. 2021, 23, 115. [Google Scholar] [CrossRef]
- Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316. [Google Scholar] [CrossRef]
- Maurya, A.; Singh, A.K.; Mishra, G.; Kumari, K.; Rai, A.; Sharma, B.; Kulkarni, G.T.; Awasthi, R. Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interv. Med. Appl. Sci. 2019, 11, 38–54. [Google Scholar] [CrossRef]
- Frank, A.; Rath, S.K.; Venkatraman, S.S. Controlled release from bioerodible polymers: Effect of drug type and polymer composition. J. Control. Release 2005, 102, 333–344. [Google Scholar] [CrossRef]
- Shah, B.R.; Mraz, J. Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquac. 2020, 12, 925–942. [Google Scholar] [CrossRef]
- Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Acharya, A.; Krishnamurthy, P.T. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein J. Nanotechnol. 2023, 14, 912–926. [Google Scholar] [CrossRef]
- O’Dowd, A.M.; Ellis, A.E.; Secombes, C.J. Binding of soluble immune complexes to fractionated Atlantic salmon (Salmo salar L.) leucocytes. Vet. Immunol. Immunopathol. 1999, 68, 149–157. [Google Scholar] [CrossRef]
- Sakai, D.K. Opsonization by fish antibody and complement in the immune phagocytosis by peritoneal exudate cells isolated from salmonid fishes. J. Fish Dis. 1984, 7, 29–38. [Google Scholar] [CrossRef]
- Honda, A.; Kodama, H.; Moustafa, M.; Yamada, F.; Mikami, T.; Izawa, H. Response of rainbow trout immunized with formalin-killed Vibrio anguillarum: Activity of phagocytosis of fish macrophages and opsonizing effect of antibody. Fish Pathol. 1985, 20, 395–402. [Google Scholar] [CrossRef]
- Honda, A.; Kodama, H.; Moustafa, M.; Yamada, F.; Mikami, T.; Izawa, H. Phagocytic activity of macrophages of rainbow trout against Vibrio anguillarum and the opsonising effect of antibody and complement. Res. Vet. Sci. 1986, 40, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Griffin, B.R. Opsonic effect of rainbow trout (Salmo gairdneri) antibody on phagocytosis of Yersinia ruckeri by trout leukocytes. Dev. Comp. Immunol. 1983, 7, 253–259. [Google Scholar] [CrossRef]
- O’Dowd, A.M.; Ellis, A.E.; Secombes, C.J. Binding of immune complexes to Atlantic salmon peripheral blood leucocytes. Dev. Comp. Immunol. 1998, 22, 439–448. [Google Scholar] [CrossRef]
- Perez-Stuardo, D.; Espinoza, A.; Tapia, S.; Morales-Reyes, J.; Barrientos, C.; Vallejos-Vidal, E.; Sandino, A.M.; Spencer, E.; Toro-Ascuy, D.; Rivas-Pardo, J.A.; et al. Non-Specific Antibodies Induce Lysosomal Activation in Atlantic Salmon Macrophages Infected by Piscirickettsia salmonis. Front. Immunol. 2020, 11, 544718. [Google Scholar] [CrossRef]
- Sahana, B.; Santra, K.; Basu, S.; Mukherjee, B. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: A physicochemical and in-vitro evaluation. Int. J. Nanomed. 2010, 5, 621–630. [Google Scholar] [CrossRef]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford Assay for Determining Protein Concentration. Cold Spring Harb. Protoc. 2020, 4, 102269. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Deluca, D.; Wilson, M.; Warr, G.W. Lymphocyte heterogeneity in the trout, Salmo gairdneri, defined with monoclonal antibodies to IgM. Eur. J. Immunol. 1983, 13, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Fryer, J.L.; Lannan, C.N.; Giovannoni, S.J.; Wood, N.D. Piscirickettsia salmonis gen. nov., sp. nov., the causative agent of an epizootic disease in salmonid fishes. J. Syst. Evol. Microbiol. 1992, 42, 120–126. [Google Scholar] [CrossRef]
- Perez-Stuardo, D.; Morales-Reyes, J.; Tapia, S.; Ahumada, D.E.; Espinoza, A.; Soto-Herrera, V.; Brianson, B.; Ibaceta, V.; Sandino, A.M.; Spencer, E.; et al. Non-lysosomal activation in macrophages of atlantic salmon (Salmo salar) after infection with piscirickettsia salmonis. Front. Immunol. 2019, 10, 434. [Google Scholar] [CrossRef]
- Perez-Stuardo, D.; Frazao, M.; Ibaceta, V.; Brianson, B.; Sanchez, E.; Rivas-Pardo, J.A.; Vallejos-Vidal, E.; Reyes-Lopez, F.E.; Toro-Ascuy, D.; Vidal, E.A.; et al. KLF17 is an important regulatory component of the transcriptomic response of Atlantic salmon macrophages to Piscirickettsia salmonis infection. Front. Immunol. 2023, 14, 1264599. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, M.; Gonzalez, E.; Marshall, S.H.; Henriquez, V.; Gomez, F.A.; Martinez, I.; Altamirano, C. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions. PLoS ONE 2013, 8, e71830. [Google Scholar] [CrossRef]
- Smith, P.A.; Diaz, F.E.; Rojas, M.E.; Diaz, S.; Galleguillos, M.; Carbonero, A. Effect of Piscirickettsia salmonis inoculation on the ASK continuous cell line. J. Fish Dis. 2015, 38, 321–324. [Google Scholar] [CrossRef]
- Karatas, S.; Mikalsen, J.; Steinum, T.M.; Taksdal, T.; Bordevik, M.; Colquhoun, D.J. Real time PCR detection of Piscirickettsia salmonis from formalin-fixed paraffin-embedded tissues. J. Fish Dis. 2008, 31, 747–753. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, N.; Qu, Y. Solubility of florfenicol in different solvents at temperatures from (278 to 318) K. J. Chem. Eng. Data 2011, 56, 638–641. [Google Scholar] [CrossRef]
- Bala, I.; Hariharan, S.; Kumar, M.R. PLGA nanoparticles in drug delivery: The state of the art. Crit. Rev. Ther. Drug Carr. Syst. 2004, 21, 387–422. [Google Scholar] [CrossRef]
- Masood, F.; Chen, P.; Yasin, T.; Fatima, N.; Hasan, F.; Hameed, A. Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater. Sci. Eng. 2013, 33, 1054–1060. [Google Scholar] [CrossRef]
- Perveen, K.; Masood, F.; Hameed, A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int. J. Biol. Macromol. 2020, 144, 259–266. [Google Scholar] [CrossRef]
- Masood, F.; Yasin, T.; Bukhari, H.; Mujahid, M. Characterization and application of roxithromycin loaded cyclodextrin based nanoparticles for treatment of multidrug resistant bacteria. Mater. Sci. Eng. 2016, 61, 1–7. [Google Scholar] [CrossRef]
- Santos, N.; Valenzuela, S.; Segura, C.; Osorio-Roman, I.; Arrazola, M.S.; Panadero-Medianero, C.; Santana, P.A.; Ahumada, M. Poly(ethylene imine)-chitosan carbon dots: Study of its physical-chemical properties and biological in vitro performance. Discov. Nano 2023, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Urzua, E.; Gonzalez-Torres, F.; Beltran, V.; Barrias, P.; Bonardd, S.; Ramirez, A.M.R.; Ahumada, M. Ag@Au bimetallic nanoparticles: An easy and highly reproducible synthetic approach for photocatalysis. Nanoscale Adv. 2022, 4, 4789–4797. [Google Scholar] [CrossRef]
- Nemeth, Z.; Csoka, I.; Semnani Jazani, R.; Sipos, B.; Haspel, H.; Kozma, G.; Konya, Z.; Dobo, D.G. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022, 14, 1798. [Google Scholar] [CrossRef]
- Rao, S.V.; Anderson, K.W.; Bachas, L.G. Oriented Immobilization of Proteins. Microchim. Acta 1998, 128, 127–143. [Google Scholar] [CrossRef]
- Fuentes, M.; Mateo, C.; Guisán, J.M.; Fernández-Lafuente, R. Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosens. Bioelectron. 2005, 20, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Chen, J.; Li, B.; Dang, J.; Zhang, W.; Zhong, X.; Wang, C.; Raoof, M.; Sun, Z.; Yu, J.; et al. Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. Sci. Adv. 2022, 8, eabl9171. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer 2012, 12, 278–287. [Google Scholar] [CrossRef]
- Aizenshtein, E.; Pinchasov, Y.; Morag, E.; Leitner, G.; Shpanir, Y.; Reimond, D.; Pitcovski, J. Immunological complex for enhancement of innate immune response in passive vaccination. Vaccine 2013, 31, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Pincetic, A.; Bournazos, S.; DiLillo, D.J.; Maamary, J.; Wang, T.T.; Dahan, R.; Fiebiger, B.M.; Ravetch, J.V. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014, 15, 707–716. [Google Scholar] [CrossRef]
- Ibuki, Y.; Toyooka, T. Nanoparticle uptake measured by flow cytometry. Nanotoxic. Methods Protoc. 2012, 926, 157–166. [Google Scholar] [CrossRef]
- Joller, N.; Weber, S.S.; Oxenius, A. Antibody-Fc receptor interactions in protection against intracellular pathogens. Eur. J. Immunol. 2011, 41, 889–897. [Google Scholar] [CrossRef]
- Joller, N.; Weber, S.S.; Muller, A.J.; Sporri, R.; Selchow, P.; Sander, P.; Hilbi, H.; Oxenius, A. Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proc. Natl. Acad. Sci. USA 2010, 107, 20441–20446. [Google Scholar] [CrossRef]
- Pillai, R.R.; Somayaji, S.N.; Rabinovich, M.; Hudson, M.C.; Gonsalves, K.E. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed. Mater. 2008, 3, 034114. [Google Scholar] [CrossRef]
- Toti, U.S.; Guru, B.R.; Hali, M.; McPharlin, C.M.; Wykes, S.M.; Panyam, J.; Whittum-Hudson, J.A. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 2011, 32, 6606–6613. [Google Scholar] [CrossRef]
- Dimer, F.A.; de Souza Carvalho-Wodarz, C.; Goes, A.; Cirnski, K.; Herrmann, J.; Schmitt, V.; Patzold, L.; Abed, N.; De Rossi, C.; Bischoff, M.; et al. PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomedicine 2020, 24, 102125. [Google Scholar] [CrossRef] [PubMed]
- Ulanova, L.S.; Pinheiro, M.; Vibe, C.; Nunes, C.; Misaghian, D.; Wilson, S.; Zhu, K.; Fenaroli, F.; Winther-Larsen, H.C.; Reis, S.; et al. Treatment of Francisella infections via PLGA- and lipid-based nanoparticle delivery of antibiotics in a zebrafish model. Dis. Aquat. Org. 2017, 125, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Abed, N.; Couvreur, P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents 2014, 43, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Greene, M.K.; Insua, J.L.; Pessoa, J.S.; Small, D.M.; Smyth, P.; McCann, A.P.; Cogo, F.; Bengoechea, J.A.; Taggart, C.C.; et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J. Control. Release 2018, 279, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.; Abdelgawad, M.A.; Mostafa, E.M. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers 2023, 15, 1123. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Khute, S.; Sahu, R.K.; Jangde, R.K. Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications. Curr. Drug Metabolism. 2024, 25, 248. [Google Scholar] [CrossRef]
- Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W.E. Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics 2020, 12, 665. [Google Scholar] [CrossRef]
- Maric, T.; Adamakis, V.; Zhang, Z.; Milian-Guimera, C.; Thamdrup, L.H.E.; Stamate, E.; Ghavami, M.; Boisen, A. Microscopic Cascading Devices for Boosting Mucus Penetration in Oral Drug Delivery-Micromotors Nesting Inside Microcontainers. Small 2023, 19, e2206330. [Google Scholar] [CrossRef]
- de Avila, B.E.; Angsantikul, P.; Li, J.; Angel Lopez-Ramirez, M.; Ramirez-Herrera, D.E.; Thamphiwatana, S.; Chen, C.; Delezuk, J.; Samakapiruk, R.; Ramez, V.; et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 2017, 8, 272. [Google Scholar] [CrossRef]
- Modi, S.; Inwati, G.K.; Gacem, A.; Saquib Abullais, S.; Prajapati, R.; Yadav, V.K.; Syed, R.; Alqahtani, M.S.; Yadav, K.K.; Islam, S.; et al. Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics. Antibiotics 2022, 11, 708. [Google Scholar] [CrossRef]
Formulation | Average Z-Size (nm) | PDI | ζ-Potential (mV) |
---|---|---|---|
PLGA (nanoparticles) | 380.5 ± 5.9 | 0.21 ± 0.032 | −12.3 ± 0.14 |
PLGA conjugated | 408.0 ± 9.5 | 0.09 ± 0.012 | −13.55 ± 0.32 |
PLGA florfenicol | 467.1 ± 9.7 | 0.07 ± 0.07 | −10.87 ± 0.20 |
PLGA florfenicol conjugated (nanosystem) | 409.4 ± 6.6 | 0.04 ± 0.027 | −9.96 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, F.; Frazao, M.; Diez, A.; Villegas, F.; Álvarez-Bidwell, M.; Rivas-Pardo, J.A.; Vallejos-Vidal, E.; Reyes-López, F.; Toro-Ascuy, D.; Ahumada, M.; et al. Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. Nanomaterials 2024, 14, 1658. https://doi.org/10.3390/nano14201658
Velásquez F, Frazao M, Diez A, Villegas F, Álvarez-Bidwell M, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López F, Toro-Ascuy D, Ahumada M, et al. Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. Nanomaterials. 2024; 14(20):1658. https://doi.org/10.3390/nano14201658
Chicago/Turabian StyleVelásquez, Felipe, Mateus Frazao, Arturo Diez, Felipe Villegas, Marcelo Álvarez-Bidwell, J. Andrés Rivas-Pardo, Eva Vallejos-Vidal, Felipe Reyes-López, Daniela Toro-Ascuy, Manuel Ahumada, and et al. 2024. "Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis" Nanomaterials 14, no. 20: 1658. https://doi.org/10.3390/nano14201658
APA StyleVelásquez, F., Frazao, M., Diez, A., Villegas, F., Álvarez-Bidwell, M., Rivas-Pardo, J. A., Vallejos-Vidal, E., Reyes-López, F., Toro-Ascuy, D., Ahumada, M., & Reyes-Cerpa, S. (2024). Salmon-IgM Functionalized-PLGA Nanosystem for Florfenicol Delivery as an Antimicrobial Strategy against Piscirickettsia salmonis. Nanomaterials, 14(20), 1658. https://doi.org/10.3390/nano14201658