Electronic and Optical Properties of 2D Heterostructure Bilayers of Graphene, Borophene and 2D Boron Carbides from First Principles
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussion
3.1. Monolayer Properties
3.2. Heterostructures
3.2.1. Structural Properties
3.2.2. Charge Density Difference
3.2.3. Band Structure and Density of States
3.2.4. Schottky Barrier Height
3.3. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janavika, K.; Thangaraj, R.P. Graphene and its Application: A Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Sakthivel, R.; Keerthi, M.; Chung, R.J.; He, J.H. Heterostructures of 2D Materials and Their Applications in Biosensing. Prog. Mater. Sci. 2023, 132, 101024. [Google Scholar] [CrossRef]
- Zhang, Z.; Lee, Y.; Haque, M.F.; Leem, J.; Hsieh, E.Y.; Nam, S. Plasmonic Sensors Based on Graphene and Graphene Hybrid Materials. Nano Converg. 2022, 9, 28. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. 2D Materials and van der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.S. Calculating Excitons, Plasmons, and Quasiparticles in 2D Materials and van der Waals Heterostructures. 2D Mater. 2017, 4, 022004. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Qi, Y.; Xu, Z.; Li, Y.; Wang, Y. From Prediction to Design: Recent Advances in Machine Learning for the Study of 2D Materials. Nano Energy 2023, 118, 108965. [Google Scholar] [CrossRef]
- Lin, Y.C.; Torsi, R.; Younas, R.; Hinkle, C.L.; Rigosi, A.F.; Hill, H.M.; Zhang, K.; Huang, S.; Shuck, C.E.; Chen, C.; et al. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS Nano 2023, 17, 9694–9747. [Google Scholar] [CrossRef]
- Elbanna, A.; Jiang, H.; Fu, Q.; Zhu, J.F.; Liu, Y.; Zhao, M.; Liu, D.; Lai, S.; Chua, X.W.; Pan, J.; et al. 2D Material Infrared Photonics and Plasmonics. ACS Nano 2023, 17, 4134–4179. [Google Scholar] [CrossRef]
- Agarwal, A.; Vitiello, M.S.; Viti, L.; Cupolillo, A.; Politano, A. Plasmonics with Two-Dimensional Semiconductors: From Basic Research to Technological Applications. Nanoscale 2018, 10, 8938–8946. [Google Scholar] [CrossRef]
- Qiu, B.; Zhao, X.; Hu, G.; Yue, W.; Ren, J.; Yuan, X. Optical Properties of Graphene/MoS2 Heterostructure: First Principles Calculations. Nanomaterials 2018, 8, 962. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Tanaka, T.; Ishida, Y.; Matsue, M.; Rokuta, E.; Otani, S.; Oshima, C. Phonon Dispersion Curves of a BC3 Honeycomb Epitaxial Sheet. Phys. Rev. Lett. 2004, 93, 177003. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Tanaka, T.; Ishida, Y.; Rokuta, E.; Otani, S.; Oshima, C. Phonon Dispersion Curves of Stable and Metastable BC3 Honeycomb Epitaxial Sheets and their Chemical Bonding: Experiment and Theory. Phys. Rev. B 2006, 73, 045412. [Google Scholar] [CrossRef]
- Tanaka, H.; Kawamata, Y.; Simizu, H.; Fujita, T.; Yanagisawa, H.; Otani, S.; Oshima, C. Novel Macroscopic BC3 Honeycomb Sheet. Solid State Commun. 2005, 136, 22–25. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, X.L.; Zhang, H. Plasmon Excitation in BC3 Nanostructures from First Principles. Plasmonics 2019, 14, 109–116. [Google Scholar] [CrossRef]
- Tian, X.; Xuan, X.; Yu, M.; Mu, Y.; Lu, H.G.; Zhang, Z.; Li, S.D. Predicting Two-Dimensional Semiconducting Boron Carbides. Nanoscale 2019, 11, 11099–11106. [Google Scholar] [CrossRef]
- Luo, X.; Yang, J.; Liu, H.; Wu, X.; Wang, Y.; Ma, Y.; Wei, S.H.; Gong, X.; Xiang, H. Predicting Two-Dimensional Boron-Carbon Compounds by the Global Optimization Method. J. Am. Chem. Soc. 2011, 133, 16285–16290. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Lu, S.; Guo, Y.; Hu, X. Two-Dimensional Stoichiometric Boron Carbides with Unexpected Chemical Bonding and Promising Electronic Properties. J. Mater. Chem. C 2018, 6, 1651–1658. [Google Scholar] [CrossRef]
- Hou, C.; Tai, G.; Liu, B.; Wu, Z.; Yin, Y. Borophene-Graphene Heterostructure: Preparation and Ultrasensitive Humidity Sensing. Nano Res. 2021, 14, 2337–2344. [Google Scholar] [CrossRef]
- Liu, X.; Hersam, M.C. Borophene-Graphene Heterostructures. Sci. Adv. 2019, 5, eaax6444. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Ruan, Q.; Rahn, M.S.; Yakobson, B.I.; Hersam, M.C. Borophene Synthesis Beyond the Single-Atomic-Layer Limit. Nat. Mater. 2022, 21, 35–40. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A Density-Functional Model of the Dispersion Interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Saßnick, H.D.; Cocchi, C. Electronic Structure of Cesium-Based Photocathode Materials From Density Functional Theory: Performance of PBE, SCAN, and HSE06 Functionals. Electron. Struct. 2021, 3, 027001. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Wooten, F. Optical Properties of Solids; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear Optical Properties in the Projector-Augmented Wave Methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef]
- Weng, J.; Gao, S.P. A Honeycomb-Like Monolayer of HfO2 and the Calculation of Static Dielectric Constant Eliminating the Effect of Vacuum Spacing. Phys. Chem. Chem. Phys. 2018, 20, 26453–26462. [Google Scholar] [CrossRef] [PubMed]
- Laturia, A.; Van de Put, M.L.; Vandenberghe, W.G. Dielectric Properties of Hexagonal Boron Nitride and Transition Metal Dichalcogenides: From Monolayer to Bulk. Npj 2D Mater. Appl. 2018, 2, 6. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Benu, D.P.; Xu, X.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chem. Rev. 2022, 122, 1000–1051. [Google Scholar] [CrossRef]
- Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X.C. Two-Dimensional Boron Monolayer Sheets. ACS Nano 2012, 6, 7443–7453. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.F.; Gao, P.F.; Fang, D.Q.; Zhang, E.H.; Zhang, S.L. Strain-Tunable Electronic and Optical Properties of BC3 Monolayer. RSC Adv. 2018, 8, 1686–1692. [Google Scholar] [CrossRef]
- Nosheen, U.; Jalil, A.; Ilyas, S.Z.; Illahi, A.; Khan, S.A.; Hassan, A. First-Principles Insight into a B4C3 Monolayer as a Promising Biosensor for Exhaled Breath Analysis. J. Electron. Mater. 2022, 51, 6568–6578. [Google Scholar] [CrossRef]
- Behzad, S. Mechanical Control of the Electro-Optical Properties of Monolayer and Bilayer BC3 by Applying the In-Plane Biaxial Strain. Surf. Sci. 2017, 665, 37–42. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, Y.; Yang, G.; Zhou, X. Theoretical Studies on the Electronic and Optical Properties of Honeycomb BC3 monolayer: A Promising Candidate for Metal-free Photocatalysts. ACS Omega 2018, 3, 10517–10525. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Zhang, X.; Zhao, J.; Zhou, X.; Zhang, H. B4C3 Monolayer with Impressive Electronic, Optical, and Mechanical Properties: A Potential Metal-Free Photocatalyst for CO2 Reduction under Visible Light. J. Phys. Chem. C 2019, 123, 25091–25101. [Google Scholar] [CrossRef]
- Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain Engineering in Semiconducting Two-Dimensional Crystals. J. Phys. Condens. Matter 2015, 27, 313201. [Google Scholar] [CrossRef] [PubMed]
- Boukhvalov, D.; Katsnelson, M.; Lichtenstein, A. Hydrogen on Graphene: Electronic Structure, Total Energy, Structural Distortions and Magnetism from First-Principles Calculations. Phys. Rev. B 2008, 77, 035427. [Google Scholar] [CrossRef]
- Tung, R.T. The Physics and Chemistry of the Schottky Barrier Height. Appl. Phys. Rev. 2014, 1, 011304. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.Q.; Wang, Q. An All-Carbon vdW Heterojunction Composed of Penta-Graphene and Graphene: Tuning the Schottky Barrier by Electrostatic Gating or Nitrogen Doping. Appl. Phys. Lett. 2017, 111, 073503. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Y.Q.; Yu, Z.L.; Wang, L.Z.; Cai, M.Q. Tuning the Schottky Rectification in Graphene-Hexagonal Boron Nitride-Molybdenum Disulfide Heterostructure. J. Colloid Interface Sci. 2018, 513, 677–683. [Google Scholar] [CrossRef]
- Warmbier, R.; Quandt, A. Plasmonic and Dielectric Properties of Ideal Graphene. Comput. Mater. Sci. 2016, 114, 18–22. [Google Scholar] [CrossRef]
- Mortazavi, B.; Shahrokhi, M.; Raeisi, M.; Zhuang, X.; Pereira, L.F.C.; Rabczuk, T. Outstanding Strength, Optical Characteristics and Thermal Conductivity of Graphene-Like BC3 and BC6N Semiconductors. Carbon 2019, 149, 733–742. [Google Scholar] [CrossRef]
- Huang, Y.; Shirodkar, S.N.; Yakobson, B.I. Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. J. Am. Chem. Soc. 2017, 139, 17181–17185. [Google Scholar] [CrossRef]
- Adamska, L.; Sharifzadeh, S. Fine-Tuning the Optoelectronic Properties of Freestanding Borophene by Strain. ACS Omega 2017, 2, 8290–8299. [Google Scholar] [CrossRef]
- Li, P.; Ren, X.; He, L. First-Principles Calculations and Model Analysis of Plasmon Excitations in Graphene and Graphene/hBN Heterostructure. Phys. Rev. B 2017, 96, 165417. [Google Scholar] [CrossRef]
System | a (Å) | B-B (Å) | C-C (Å) | B-C (Å) | (eV) | (eV) | Nature |
---|---|---|---|---|---|---|---|
BC3 | 5.169 | - | 1.421 | 1.563 | 0.634 (0.62–0.66) [38,40,41] | 1.822 (1.83) [41] | indirect |
Borophene | 5.051 | 1.689 () 1.672 () 1.707 () | - | - | - | - | metallic |
B4C3 | 4.690 | 1.689 () | - | 1.592 () 1.517 () 1.548 () | 1.647 | 2.381 (2.39) [42] | indirect |
Graphene | 2.467 | - | 1.424 | - | - | - | semimetal |
System | Coordination | a (Å) | (Å) | Nature | ||
---|---|---|---|---|---|---|
Graphene–BC3 | Hollow | 5.044 | 2.23% | −2.42% | 3.372 | semi-metal |
Graphene–Borophene | Top | 4.979 | 0.91% | −1.43% | 3.505 | metallic |
Graphene–B4C3 | Top | 4.846 | −1.78% | 3.33% | 3.514 | semi-metal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, L.; Conquest, O.J.; Verdi, C.; Stampfl, C. Electronic and Optical Properties of 2D Heterostructure Bilayers of Graphene, Borophene and 2D Boron Carbides from First Principles. Nanomaterials 2024, 14, 1659. https://doi.org/10.3390/nano14201659
Niu L, Conquest OJ, Verdi C, Stampfl C. Electronic and Optical Properties of 2D Heterostructure Bilayers of Graphene, Borophene and 2D Boron Carbides from First Principles. Nanomaterials. 2024; 14(20):1659. https://doi.org/10.3390/nano14201659
Chicago/Turabian StyleNiu, Lu, Oliver J. Conquest, Carla Verdi, and Catherine Stampfl. 2024. "Electronic and Optical Properties of 2D Heterostructure Bilayers of Graphene, Borophene and 2D Boron Carbides from First Principles" Nanomaterials 14, no. 20: 1659. https://doi.org/10.3390/nano14201659
APA StyleNiu, L., Conquest, O. J., Verdi, C., & Stampfl, C. (2024). Electronic and Optical Properties of 2D Heterostructure Bilayers of Graphene, Borophene and 2D Boron Carbides from First Principles. Nanomaterials, 14(20), 1659. https://doi.org/10.3390/nano14201659