Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Li, J.; Zhang, W.; Chang, H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 2015, 6, 6705–6716. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Late, D.J.; Kumar, A.; Patel, S.; Singh, J. 2D Layered Transition Metal Dichalcogenides (MoS2): Synthesis, Applications and Theoretical Aspects. Appl. Mater. Today 2018, 13, 242–270. [Google Scholar] [CrossRef]
- Yu, J.; Hu, X.; Li, H.; Zhou, X.; Zhai, T. Large-Scale Synthesis of 2D Metal Dichalcogenides. J. Mater. Chem. C 2018, 6, 4627. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical Synthesis of 2D Materials. Chem. Soc. Rev. 2018, 47, 8744. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, T.; Feng, X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem. Rev. 2018, 118, 6189–6235. [Google Scholar] [CrossRef]
- Alam, S.; Chowdhury, M.A.; Shahid, A.; Alam, R.; Rahim, A. Synthesis of emerging two-dimensional (2D) materials—Advances, challenges and prospects. FlatChem 2021, 30, 100305. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kwak, J.; Ciobanu, C.V.; Kwon, S.Y. Recent Developments in Controlled Vapor-Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Adv. Mater. 2019, 31, 1804939. [Google Scholar] [CrossRef]
- Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O.L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; et al. Large-Area Epitaxial Monolayer MoS2. ACS Nano 2015, 9, 4611–4620. [Google Scholar] [CrossRef]
- Seravalli, L.; Bosi, M. A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials 2021, 14, 7590. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, X.; Wei, J.; Wang, S.; Chen, S.; Wu, S.; Ji, M.; Sun, Z.; Xu, Z.; Bao, W.; et al. 2-Inch Growth of Uniform MoS2 Monolayer for Integrated Circuit Manufacture. Nat. Mater. 2023, 22, 1324–1331. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, J.; Li, X.; Tian, J.; Liang, J.; Li, N.; Ji, D.; Xian, L.; Guo, Y.; Li, L.; et al. Layer-by-Layer Epitaxy of Multi-Layer MoS2 Wafers. Natl. Sci. Rev. 2022, 9, nwac077. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Galfsky, T.; Sun, Z.; Xia, F.; Lin, E.; Lee, Y.-H.; Kéna-Cohen, S.; Menon, V.M. Strong Light–Matter Coupling in Two-Dimensional Atomic Crystals. Nat. Photonics 2015, 9, 30–34. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Nalwa, H.S. A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wan, R.; Li, L.; Liu, Z.; Yan, S.; Li, L.; Wang, J.; Gao, Y. Research Progress on Improving the Performance of MoS 2 Photodetector. J. Opt. 2022, 24, 104003. [Google Scholar] [CrossRef]
- Ye, Z.; Tan, C.; Huang, X.; Ouyang, Y.; Yang, L.; Wang, Z.; Dong, M. Emerging MoS2 Wafer-Scale Technique for Integrated Circuits. Nano-Micro Lett. 2023, 15, 38. [Google Scholar] [CrossRef]
- Seo, J.; Lee, J.; Baek, S.; Jung, W.; Oh, N.K.; Son, E.; Park, H. Liquid Precursor-Mediated Epitaxial Growth of Highly Oriented 2D van Der Waals Semiconductors toward High-Performance Electronics. ACS Appl. Electron. Mater. 2021, 3, 5528–5536. [Google Scholar] [CrossRef]
- Zhang, T.; Fujisawa, K.; Zhang, F.; Liu, M.; Lucking, M.C.; Gontijo, R.N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T.; et al. Universal In Situ Substitutional Doping of Transition Metal Dichalcogenides by Liquid-Phase Precursor-Assisted Synthesis. ACS Nano 2020, 14, 4326–4335. [Google Scholar] [CrossRef]
- Tong, S.W.; Medina, H.; Liao, W.; Wu, J.; Wu, W.; Chai, J.; Yang, M.; Abutaha, A.; Wang, S.; Zhu, C.; et al. Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS2 for High-Performance Field-Effect Transistors. ACS Appl. Mater. Interfaces 2019, 11, 14239–14248. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Yang, D.; Jing, F.; Qiu, H.; Liu, H.; Hu, Z. Embedded Lanthanoid Ions Modulated the Periodic Luminescence of Transition Metal Dichalcogenide Monolayers Prepared from an Aqueous Orecursor. J. Mater. Chem. C Mater. 2022, 10, 8061–8069. [Google Scholar] [CrossRef]
- Qin, Z.; Loh, L.; Wang, J.; Xu, X.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J.Z.; Schultz, T.; et al. Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing. ACS Nano 2019, 13, 10768–10775. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Jin, Y.; Zhang, Z.; Song, R.; Liu, M.; Li, W.; Li, X.; Wu, R.; Li, B.; Li, J.; et al. Recent Advances in Spin-Coating Precursor Mediated Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides. Precis. Chem. 2024, 2, 282–299. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Zhao, B.; Zhao, W.; Ni, Z. Liquid-Precursor-Intermediated Synthesis of Atomically Thin Transition Metal Dichalcogenides. Mater. Horiz. 2023, 10, 1105–1120. [Google Scholar] [CrossRef]
- Kang, S.K.; Lee, H.S. Study on Growth Parameters for Monolayer MoS2 Synthesized by CVD Using Solution-Based Metal Precursors. Appl. Sci. Converg. Technol. 2019, 28, 159–163. [Google Scholar] [CrossRef]
- Kim, H.; Han, G.H.; Yun, S.J.; Zhao, J.; Keum, D.H.; Jeong, H.Y.; Ly, T.H.; Jin, Y.; Park, J.-H.; Moon, B.H.; et al. Role of Alkali Metal Promoter in Enhancing Lateral Growth of Monolayer Transition Metal Dichalcogenides. Nanotechnology 2017, 28, 36LT01. [Google Scholar] [CrossRef]
- Yang, K.Y.; Nguyen, H.T.; Tsao, Y.M.; Artemkina, S.B.; Fedorov, V.E.; Huang, C.W.; Wang, H.C. Large Area MoS2 Thin Film Growth by Direct Sulfurization. Sci. Rep. 2023, 13, 8378. [Google Scholar] [CrossRef]
- An, G.H.; Yun, S.J.; Lee, Y.H.; Lee, H.S. Growth Mechanism of Alternating Defect Domains in Hexagonal WS 2 via Inhomogeneous W—Precursor Accumulation. Small 2020, 16, e2003326. [Google Scholar] [CrossRef] [PubMed]
- Seravalli, L.; Esposito, F.; Bosi, M.; Aversa, L.; Trevisi, G.; Verucchi, R.; Lazzarini, L.; Rossi, F.; Fabbri, F. Built-in Tensile Strain Dependence on the Lateral Size of Monolayer MoS2 Synthesized by Liquid Precursor Chemical Vapor Deposition Nanoscale. Nanoscale 2023, 15, 14669. [Google Scholar] [CrossRef]
- Esposito, F.; Bosi, M.; Attolini, G.; Rossi, F.; Panasci, S.E.; Fiorenza, P.; Giannazzo, F.; Fabbri, F.; Seravalli, L. Role of Density Gradients in the Growth Dynamics of 2-Dimensional MoS2 Using Liquid Phase Molybdenum Precursor in Chemical Vapor Deposition. Appl. Surf. Sci. 2023, 639, 158230. [Google Scholar] [CrossRef]
- Senkić, A.; Bajo, J.; Supina, A.; Radatović, B.; Vujičić, N. Effects of CVD Growth Parameters on Global and Local Optical Properties of MoS2 Monolayers. Mater. Chem. Phys. 2023, 296, 127185. [Google Scholar] [CrossRef]
- Kang, W.T.; Phan, T.L.; Ahn, K.J.; Lee, I.; Kim, Y.R.; Won, U.Y.; Kim, J.E.; Lee, Y.H.; Yu, W.J. Selective Pattern Growth of Atomically Thin MoSe2Films via a Surface-Mediated Liquid-Phase Promoter. ACS Appl. Mater. Interfaces 2021, 13, 18056–18064. [Google Scholar] [CrossRef]
- Tian, C.; Xiao, R.; Sui, Y.; Feng, Y.; Wang, H.; Zhao, S.; Liu, J.; Gao, X.; Wang, S.; Yu, G. The Controllable Synthesis of Bilayer V Doped WS 2 Based on Liquid Precursor Assisted CVD. Mater. Lett. 2023, 353, 135292. [Google Scholar] [CrossRef]
- Han, G.H.; Neumann, M.; Song, S.; Park, H.W.; Moon, B.H.; Lee, Y.H. Unusual Stacking Sequence of MoS2 and WS2 Vertical Heterostructures in One-Pot Chemical Vapor Deposition Growth. J. Korean Phys. Soc. 2023, 82, 57–67. [Google Scholar] [CrossRef]
- Rotunno, E.; Bosi, M.; Seravalli, L.; Salviati, G.; Fabbri, F. Influence of Organic Promoter Gradient on the MoS2 Growth Dynamics. Nanoscale Adv. 2020, 2, 2352–2362. [Google Scholar] [CrossRef]
- Seravalli, L.; Bosi, M.; Fiorenza, P.; Panasci, S.E.; Orsi, D.; Rotunno, E.; Cristofolini, L.; Rossi, F.; Giannazzo, F.; Fabbri, F. Gold Nanoparticle Assisted Synthesis of MoS2 Monolayers by Chemical Vapor Deposition. Nanoscale Adv. 2021, 3, 4826–4833. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Shim, G.W.; Seo, S.-B.; Choi, S.-Y. Effective Shape-Controlled Growth of Monolayer MoS2 Flakes by Powder-Based Chemical Vapor Deposition. Nano Res. 2017, 10, 255–262. [Google Scholar] [CrossRef]
- Pei, J.; Yang, J.; Xu, R.; Zeng, Y.H.; Myint, Y.W.; Zhang, S.; Zheng, J.C.; Qin, Q.; Wang, X.; Jiang, W.; et al. Exciton and Trion Dynamics in Bilayer MoS2. Small 2015, 11, 6384–6390. [Google Scholar] [CrossRef]
- Cadiz, F.; Tricard, S.; Gay, M.; Lagarde, D.; Wang, G.; Robert, C.; Renucci, P.; Urbaszek, B.; Marie, X. Well Separated Trion and Neutral Excitons on Superacid Treated MoS2 Monolayers. Appl. Phys. Lett. 2016, 108, 251106. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Golovynskyi, S.; Irfan, I.; Bosi, M.; Seravalli, L.; Datsenko, O.I.; Golovynska, I.; Li, B.; Lin, D.; Qu, J. Exciton and Trion in Few-Layer MoS2: Thickness- and Temperature-Dependent Photoluminescence. Appl. Surf. Sci. 2020, 515, 146033. [Google Scholar] [CrossRef]
- Amani, M.; Lien, D.H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; Santosh, K.C.; Dubey, M.; et al. Near-Unity Photoluminescence Quantum Yield in MoS2. Science 2015, 350, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, B.; Yuan, J.; Filez, M.; Fu, D.; Hu, J.; Lou, J.; Scully, M.O.; Weckhuysen, B.M.; Zhang, Z. Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications. ACS Appl. Nano Mater. 2018, 1, 6226–6235. [Google Scholar] [CrossRef]
- Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 5944–5948. [Google Scholar] [CrossRef]
- Lu, A.Y.; Martins, L.G.P.; Shen, P.C.; Chen, Z.; Park, J.H.; Xue, M.; Han, J.; Mao, N.; Chiu, M.H.; Palacios, T.; et al. Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine-Learning Models. Adv. Mater. 2022, 34, e2202911. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Y.; Meng, Q.; Lu, X.; Kong, S.; Huang, Z.; Jiang, P.; Bao, X. Role of the Carrier Gas Flow Rate in Monolayer MoS2 Growth by Modified Chemical Vapor Deposition. Nano Res. 2016, 10, 643–651. [Google Scholar] [CrossRef]
- Cao, Y.; Luo, X.; Han, S.; Yuan, C.; Yang, Y.; Li, Q.; Yu, T.; Ye, S. Influences of Carrier Gas Flow Rate on the Morphologies of MoS2 Flakes. Chem. Phys. Lett. 2015, 631–632, 30–33. [Google Scholar] [CrossRef]
- Cho, Y.J.; Sim, Y.; Lee, J.H.; Hoang, N.T.; Seong, M.J. Size and Shape Control of CVD-Grown Monolayer MoS2. Curr. Appl. Phys. 2023, 45, 99–104. [Google Scholar] [CrossRef]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.W.; Chang, C.S.; Li, L.J.; et al. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; et al. Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano 2013, 7, 8963–8971. [Google Scholar] [CrossRef] [PubMed]
- Johari, M.H.; Sirat, M.S.; Mohamed, M.A.; Mustaffa, A.F.; Mohmad, A.R. Computational Fluid Dynamics Insights into Chemical Vapor Deposition of Homogeneous MoS2 Film with Solid Precursors. Cryst. Res. Technol. 2023, 58, 2300139. [Google Scholar] [CrossRef]
- Herman, M.A.; Richter, W.; Sitter, H. Epitaxy; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 62, ISBN 978-3-642-08737-0. [Google Scholar]
- Panasci, S.E.; Koos, A.; Schilirò, E.; Di Franco, S.; Greco, G.; Fiorenza, P.; Roccaforte, F.; Agnello, S.; Cannas, M.; Gelardi, F.M.; et al. Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization. Nanomaterials 2022, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett. 2013, 13, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Pondick, J.V.; Woods, J.M.; Xing, J.; Zhou, Y.; Cha, J.J. Stepwise Sulfurization from MoO3 to MoS2 via Chemical Vapor Deposition. ACS Appl. Nano Mater. 2018, 1, 5655–5661. [Google Scholar] [CrossRef]
- Withanage, S.S.; Kalita, H.; Chung, H.-S.; Roy, T.; Jung, Y.; Khondaker, S.I. Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS2 Using MoO3 Thin Film as a Precursor for Coevaporation. ACS Omega 2024, 3, 18943–18949. [Google Scholar] [CrossRef]
- Kumar, P.; Viswanath, B. Horizontally and Vertically Aligned Growth of Strained MoS2 Layers with Dissimilar Wetting and Catalytic Behaviors †. CrystEngComm 2017, 19, 5068–5078. [Google Scholar] [CrossRef]
- Kwak, T.; Lee, J.; So, B.; Choi, U.; Nam, O. Growth Behavior of Wafer-Scale Two-Dimensional MoS2 Layer Growth Using Metal-Organic Chemical Vapor Deposition. J. Cryst. Growth 2019, 510, 50–55. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Wang, K.; Wei, C.; Zhang, W.; Yan, Y.; Li, Y.J.; Yao, J.; Zhao, Y.S. Two-Dimensional Pyramid-like WS2 Layered Structures for Highly Efficient Edge Second Harmonic Generation. ACS Nano 2018, 12, 689–696. [Google Scholar] [CrossRef]
- Negri, M.; Francaviglia, L.; Kaplan, D.; Swaminathan, V.; Salviati, G.; Fontcuberta I Morral, A.; Fabbri, F. Excitonic Absorption and Defect-Related Emission in Three-Dimensional MoS2 Pyramids †. Nanoscale 2022, 14, 1179–1186. [Google Scholar] [CrossRef]
- Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J.H. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chem. Mater. 2014, 26, 6371–6379. [Google Scholar] [CrossRef]
- Zhu, Z.; You, J.; Zhu, D.; Jiang, G.; Zhan, S.; Wen, J.; Xia, Q. Effect of Precursor Ratio on the Morphological and Optical Properties of CVD-Grown Monolayer MoS2 Nanosheets. Mater. Res. Express 2021, 8, 045008. [Google Scholar] [CrossRef]
- Wang, S.; Pacios, M.; Bhaskaran, H.; Warner, J.H. Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology 2016, 27, 085604. [Google Scholar]
- Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. Nanoscale 2012, 4, 6637–6641. [Google Scholar] [CrossRef]
Flake Size (µm) | Mo Precursor | Temperature | Substrate | No. of Layers | Applications | Ref. |
---|---|---|---|---|---|---|
continuous | MoO3 thin film | 1000 °C | c-sapphire | Trilayers | Electronics (FET) | [65] |
10–50 | MoO3 powders | 750 °C | SiO2/Si | Mono and Bilayers | Photonics | [34] |
10–100 | MoO3 powders | 700–720 °C | SiO2/Si | Monolayers | n.a. | [36] |
10–20 | Liquid | 850 °C | c-sapphire | Monolayers | Electronics (FET) | [17] |
100–250 | Liquid | 725 °C | SiO2/Si | Mono and Bilayers | Electronics (FET) | [19] |
100–200 | Liquid | 820 °C | SiO2/Si | Monolayers | n.a. | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, F.; Bosi, M.; Attolini, G.; Rossi, F.; Fornari, R.; Fabbri, F.; Seravalli, L. Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials 2024, 14, 1749. https://doi.org/10.3390/nano14211749
Esposito F, Bosi M, Attolini G, Rossi F, Fornari R, Fabbri F, Seravalli L. Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials. 2024; 14(21):1749. https://doi.org/10.3390/nano14211749
Chicago/Turabian StyleEsposito, Fiorenza, Matteo Bosi, Giovanni Attolini, Francesca Rossi, Roberto Fornari, Filippo Fabbri, and Luca Seravalli. 2024. "Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors" Nanomaterials 14, no. 21: 1749. https://doi.org/10.3390/nano14211749
APA StyleEsposito, F., Bosi, M., Attolini, G., Rossi, F., Fornari, R., Fabbri, F., & Seravalli, L. (2024). Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials, 14(21), 1749. https://doi.org/10.3390/nano14211749