Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Bubble Printing System
2.4. Preparation of EGaIn Colloidal Particles
3. Results and Discussion
3.1. Characterization of EGaIn Colloidal Particles
3.2. Bubble Printing of EGaIn Colloidal Particles
3.3. Improving the Electrical Conductivity of EGaIn Colloid Wires Using Galvanic Displacement
3.4. Fabrication of a Fine Line Pattern
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremer, J.; Mena-Osteritz, E.; Pschierer, N.G.; Müllen, K.; Bäuerle, P. Dye-Functionalized Head-to-Tail Coupled Oligo(3-Hexylthiophenes)-Perylene-Oligothiophene Dyads for Photovoltaic Applications. Org. Biomol. Chem. 2005, 3, 985–995. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast Lasers-Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast Laser Processing of Materials: From Science to Industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef]
- Qin, M.; Zhao, X.; Fan, H.; Leng, R.; Yu, Y.; Li, A.; Gao, B. Ultrafast Laser Processing for High-Aspect-Ratio Structures. Nanomaterials 2024, 14, 1428. [Google Scholar] [CrossRef]
- Rahim, K.; Mian, A. A Review on Laser Processing in Electronic and MEMS Packaging. J. Electron. Packag. 2017, 139, 030801. [Google Scholar] [CrossRef]
- Vivaldi, F.M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260. [Google Scholar] [CrossRef]
- Stratakis, E.; Ranella, A.; Farsari, M.; Fotakis, C. Laser-Based Micro/Nanoengineering for Biological Applications. Prog. Quantum Electron. 2009, 33, 127–163. [Google Scholar] [CrossRef]
- Davis, R.; Singh, A.; Jackson, M.J.; Coelho, R.T.; Prakash, D.; Charalambous, C.P.; Ahmed, W.; da Silva, L.R.R.; Lawrence, A.A. A Comprehensive Review on Metallic Implant Biomaterials and Their Subtractive Manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1473–1530. [Google Scholar] [CrossRef]
- Maruo, S. Stereolithography and Two-Photon Polymerization. In Handbook of Laser Micro- and Nano-Engineering; Sugioka, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1375–1399. [Google Scholar]
- Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric Composites for Powder-Based Additive Manufacturing: Materials and Applications. Prog. Polym. Sci. 2019, 91, 141–168. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Armon, N.; Greenberg, E.; Edri, E.; Nagler-Avramovitz, O.; Elias, Y.; Shpaisman, H. Laser-Based Printing: From Liquids to Microstructures. Adv. Funct. Mater. 2021, 31, 2008547. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D Printing of Ceramics: A Review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef]
- Maria, D.; Michael, M.; Kishan, D. Optical Manipulation of Nanoparticles: A Review. J. Nanophotonics 2008, 2, 021875. [Google Scholar] [CrossRef]
- Gao, D.; Ding, W.; Nieto-Vesperinas, M.; Ding, X.; Rahman, M.; Zhang, T.; Lim, C.; Qiu, C.-W. Optical Manipulation from the Microscale to the Nanoscale: Fundamentals, Advances and Prospects. Light Sci. Appl. 2017, 6, e17039. [Google Scholar] [CrossRef]
- Bangalore Rajeeva, B.; Lin, L.; Perillo, E.P.; Peng, X.; Yu, W.W.; Dunn, A.K.; Zheng, Y. High-Resolution Bubble Printing of Quantum Dots. ACS Appl. Mater. Interfaces 2017, 9, 16725–16733. [Google Scholar] [CrossRef]
- Hill, E.H.; Goldmann, C.; Hamon, C.; Herber, M. Laser-Driven Bubble Printing of Plasmonic Nanoparticle Assemblies onto Nonplasmonic Substrates. J. Phys. Chem. C 2022, 126, 7622–7629. [Google Scholar] [CrossRef]
- Lin, L.; Peng, X.; Mao, Z.; Li, W.; Yogeesh, M.N.; Rajeeva, B.B.; Perillo, E.P.; Dunn, A.K.; Akinwande, D.; Zheng, Y. Bubble-Pen Lithography. Nano Lett. 2016, 16, 701–708. [Google Scholar] [CrossRef]
- Armon, N.; Greenberg, E.; Layani, M.; Rosen, Y.S.; Magdassi, S.; Shpaisman, H. Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns. ACS Appl. Mater. Interfaces 2017, 9, 44214–44221. [Google Scholar] [CrossRef]
- Edri, E.; Armon, N.; Greenberg, E.; Hadad, E.; Bockstaller, M.R.; Shpaisman, H. Assembly of Conductive Polyaniline Microstructures by a Laser-Induced Microbubble. ACS Appl Mater Inter. 2020, 12, 22278–22286. [Google Scholar] [CrossRef]
- Roy, B.; Arya, M.; Thomas, P.; Jürgschat, J.K.; Venkata Rao, K.; Banerjee, A.; Malla Reddy, C.; Roy, S. Self-Assembly of Mesoscopic Materials To Form Controlled and Continuous Patterns by Thermo-Optically Manipulated Laser Induced Microbubbles. Langmuir 2013, 29, 14733–14742. [Google Scholar] [CrossRef]
- Nishiyama, H.; Umetsu, K.; Kimura, K. Versatile Direct Laser Writing of Non-Photosensitive Materials Using Multi-Photon Reduction-Based Assembly of Nanoparticles. Sci. Rep. 2019, 9, 14310. [Google Scholar] [CrossRef]
- Edri, E.; Armon, N.; Greenberg, E.; Moshe-Tsurel, S.; Lubotzky, D.; Salzillo, T.; Perelshtein, I.; Tkachev, M.; Girshevitz, O.; Shpaisman, H. Laser Printing of Multilayered Alternately Conducting and Insulating Microstructures. ACS Appl. Mater. Interfaces 2021, 13, 36416–36425. [Google Scholar] [CrossRef]
- Zrnic, D.; Swatik, D. On the Resistivity and Surface Tension of the Eutectic Alloy of Gallium and Indium. J. Less Common Met. 1969, 18, 67–68. [Google Scholar] [CrossRef]
- Denny, J.P.; Hamilton, J.H.; Lewis, J.R. Constitution of the System Gallium-Indium. JOM 1952, 4, 39–42. [Google Scholar] [CrossRef]
- Hafiz, S.S.; Xavierselvan, M.; Gokalp, S.; Labadini, D.; Barros, S.; Duong, J.; Foster, M.; Mallidi, S. Eutectic Gallium–Indium Nanoparticles for Photodynamic Therapy of Pancreatic Cancer. ACS Appl. Nano Mater. 2022, 5, 6125–6139. [Google Scholar] [CrossRef]
- Zhou, L.y.; Fu, J.z.; Gao, Q.; Zhao, P.; He, Y. All-Printed Flexible and Stretchable Electronics with Pressing or Freezing Activatable Liquid-Metal-Silicone Inks. Adv. Funct. Mater. 2019, 30, 1906683. [Google Scholar] [CrossRef]
- Liu, S.; Reed, S.N.; Higgins, M.J.; Titus, M.S.; Kramer-Bottiglio, R. Oxide Rupture-Induced Conductivity in Liquid Metal Nanoparticles by Laser and Thermal Sintering. Nanoscale 2019, 11, 17615–17629. [Google Scholar] [CrossRef]
- Lee, W.; Kim, H.; Kang, I.; Park, H.; Jung, J.; Lee, H.; Park, H.; Park, J.S.; Yuk, J.M.; Ryu, S.; et al. Universal Assembly of Liquid Metal Particles in Polymers Enables Elastic Printed Circuit Board. Science 2022, 378, 637–641. [Google Scholar] [CrossRef]
- Park, Y.G.; An, H.S.; Kim, J.Y.; Park, J.U. High-Resolution, Reconfigurable Printing of Liquid Metals with Three-Dimensional Structures. Sci. Adv. 2019, 5, eaaw2844. [Google Scholar] [CrossRef]
- Lazarus, N.; Bedair, S.S.; Kierzewski, I.M. Ultrafine Pitch Stencil Printing of Liquid Metal Alloys. ACS Appl. Mater. Interfaces 2017, 9, 1178–1182. [Google Scholar] [CrossRef]
- Teng, L.; Ye, S.; Handschuh-Wang, S.; Zhou, X.; Gan, T.; Zhou, X. Liquid Metal-Based Transient Circuits for Flexible and Recyclable Electronics. Adv. Funct. Mater. 2019, 29, 1808739. [Google Scholar] [CrossRef]
- Maruyama, T.; Mukai, M.; Sato, R.; Iijima, M.; Sato, M.; Furukawa, T.; Maruo, S. Multifunctional 3D Printing of Heterogeneous Polymer Structures by Laser-Scanning Micro-Stereolithography Using Reversible Addition–Fragmentation Chain-Transfer Polymerization. ACS Appl. Polym. Mater. 2022, 4, 5515–5523. [Google Scholar] [CrossRef]
- Takenouchi, M.; Mukai, M.; Furukawa, T.; Maruo, S. Fabrication of Flexible Wiring with Intrinsically Conducting Polymers Using Blue-Laser Microstereolithography. Polymers 2022, 14, 4949. [Google Scholar] [CrossRef]
- Maruyama, T.; Hirata, H.; Furukawa, T.; Maruo, S. Multi-Material Microstereolithography Using a Palette with Multicolor Photocurable Resins. Opt. Mater. Express 2020, 10, 2522–2532. [Google Scholar] [CrossRef]
- Arita, R.; Iijima, M.; Fujishiro, Y.; Morita, S.; Furukawa, T.; Tatami, J.; Maruo, S. Rapid Three-Dimensional Structuring of Transparent SiO2 Glass Using Interparticle Photo-Cross-Linkable Suspensions. Commun. Mater. 2020, 1, 30. [Google Scholar] [CrossRef]
- Maruo, S.; Nakamura, O.; Kawata, S. Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization. Opt. Lett. 1997, 22, 132–134. [Google Scholar] [CrossRef]
- Fujishiro, Y.; Furukawa, T.; Maruo, S. Simple Autofocusing Method by Image Processing Using Transmission Images for Large-Scale Two-Photon Lithography. Opt. Express 2020, 28, 12342–12351. [Google Scholar] [CrossRef]
- David, R.; Miki, N. Synthesis of Sub-Micrometer Biphasic Au–AuGa2/Liquid Metal Frameworks. Nanoscale 2019, 11, 21419–21432. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill, Inc.: New York, NY, USA, 1968. [Google Scholar]
- Pearton, S.J.; Ren, F.; Tadjer, M.; Kim, J. Perspective: Ga2o3 for Ultra-High Power Rectifiers and Mosfets. J. Appl. Phys. 2018, 124, 220901. [Google Scholar] [CrossRef]
- Boley, J.W.; White, E.L.; Kramer, R.K. Mechanically Sintered Gallium–Indium Nanoparticles. Adv. Mater. 2015, 27, 2355–2360. [Google Scholar] [CrossRef]
- Oloye, O.; Tang, C.; Du, A.; Will, G.; O’Mullane, A.P. Galvanic Replacement of Liquid Metal Galinstan with Pt for the Synthesis of Electrocatalytically Active Nanomaterials. Nanoscale 2019, 11, 9705–9715. [Google Scholar] [CrossRef]
- Vanýsek, P. Electorochemical Series. In CRC Handbook of Chemistry and Physics, 95th ed.; Haynes, W.M., Ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Hoshyargar, F.; Crawford, J.; O’Mullane, A.P. Galvanic Replacement of the Liquid Metal Galinstan. J. Am. Chem. Soc. 2017, 139, 1464–1471. [Google Scholar] [CrossRef]
- Castaing, R. Electron Probe Microanalysis. In Advances in Electronics and Electron Physics; Marton, L., Marton, C., Eds.; Academic Press: Cambridge, MA, USA, 1960; Volume 13, pp. 317–386. [Google Scholar]
- Raymond, S. Principles of Physics, 2nd ed.; Saunders College Pub.: Fort Worth, TX, USA, 1998; p. 602. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukai, M.; Kobayashi, T.; Sato, M.; Asada, J.; Ueno, K.; Furukawa, T.; Maruo, S. Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns. Nanomaterials 2024, 14, 1665. https://doi.org/10.3390/nano14201665
Mukai M, Kobayashi T, Sato M, Asada J, Ueno K, Furukawa T, Maruo S. Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns. Nanomaterials. 2024; 14(20):1665. https://doi.org/10.3390/nano14201665
Chicago/Turabian StyleMukai, Masaru, Tatsuya Kobayashi, Mitsuki Sato, Juri Asada, Kazuhide Ueno, Taichi Furukawa, and Shoji Maruo. 2024. "Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns" Nanomaterials 14, no. 20: 1665. https://doi.org/10.3390/nano14201665
APA StyleMukai, M., Kobayashi, T., Sato, M., Asada, J., Ueno, K., Furukawa, T., & Maruo, S. (2024). Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns. Nanomaterials, 14(20), 1665. https://doi.org/10.3390/nano14201665