Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
1.1. Background Description
1.2. Nano-Coolant Overview
1.3. Thermal Conductivity of Nano-Coolant
1.4. Brief Summary
2. Thermal Conductivity Model Formulation
2.1. Theoretical Analysis
2.2. Micromorphology Analysis of Nanoparticles
2.3. Thermophysical Property Comparison of Different Nano-Coolants
2.4. Thermal Conductivity Model for PEMFC
3. Conclusions
- (1)
- Analyzing the type of fuel cells, as well as the application objects of Proton Exchange Membrane Fuel Cells. Then introducing the structure of a thermal management system of Proton Exchange Membrane Fuel Cells and the current problems. Thus, the nano-coolant is proposed.
- (2)
- According to the previous research of nano-coolant applications in PEMFCs, ZnO, Al2O3, TiO2, and BN nano-coolants were selected to delve into the thermal conductivity model of nano-coolants suitable for PEMFCs. The mechanism of nano-coolant settling was also analyzed.
- (3)
- Comparing and analyzing the classical thermal conductivity model of a nano-coolant, which were proposed in recent years. Focusing on the theory of nano-coolants’ adsorption layer thermal conductivity, which include linear and non-linear distribution curves.
- (4)
- The microscopic characterization of nanoparticles was obtained via SEM scanning electron microscopy. The experimental results could be used to obtain the sphericity of different nanoparticles based on the microscopic morphology measurement.
- (5)
- Combining the Hamilton & Crosser model and nano-coolants’ adsorption layer theory, a new thermal conductivity model of nano-coolants suitable for PEMFCs was established. This model can be used to calculate the thermal conductivity of nano-coolants in PEMFCs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
PEMFC | Proton Exchange Membrane Fuel Cell |
PAFC | Phosphoric Acid Fuel Cell |
SOFC | Solid Oxide Fuel Cell |
MCFC | Molten Carbonate Fuel Cell |
SOFC | Solid Oxide Fuel Cell |
AFC | Alkaline Fuel Cell |
U.S. | United States |
ZnO | Zinc Oxide |
TiO2 | Titanium Oxide |
Al2O3 | Aluminum Oxide |
BN | Boron Nitride |
Al2O3-SiO2 | Aluminum Oxide- Silicon Dioxide |
DLVO | Derjaguin Landau Vewey Overbeek |
SEM | Scanning Electron Microscope |
Symbols | |
Nano-coolant’s density | |
Base fluid’s density | |
Nanoparticle’s density | |
Nano-coolant’s volume fraction | |
Cnf | Nano-coolant’s specific heat |
Cbf | Base fluid’s specific heat |
Cp | Nanoparticle’s specific heat |
knf | Nano-coolant’s thermal conductivity |
kbf | Base fluid’s thermal conductivity |
kp | Nanoparticle’s thermal conductivity |
n | Shape factor |
Sphericity degree | |
K | Convective heat transfer coefficient |
hi | Convective heat transfer coefficient inside flat tube |
h0 | Convective heat transfer coefficient outside flat tube |
Ri | Fouling resistance inside flat tube |
R0 | Fouling resistance outside flat tube |
Ai | Heat exchange area inside flat tube |
A0 | Heat exchange area outside flat tube |
Thickness of flat tube | |
Flat tube thermal conductivity | |
L | Nanoparticle length |
d | Nanoparticle diameter |
kl | Average thermal conductivity of Nano-coolant adsorption layer |
References
- Fan, L.X.; Tu, Z.K. Recent Development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective. Int. J. Hydrog. Energy 2023, 48, 7828–7865. [Google Scholar] [CrossRef]
- Pramuanjaroenkij, A. The fuel cell electric vehicles: The highlight review. Int. J. Hydrog. Energy 2023, 48, 9401–9425. [Google Scholar] [CrossRef]
- Wu, H.W. A review of recent development: Transport and performance modelling of PEM fuel cells. Appl. Energy 2016, 165, 81–106. [Google Scholar] [CrossRef]
- Qu, E.; Hao, X.F. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives. J. Power Sources 2022, 533, 231386. [Google Scholar] [CrossRef]
- Yang, Q.; Zeng, T. Modeling and simulation of vehicle integrated thermal management system for a fuel cell vehicle. Energy Convers. Manag. 2023, 278, 116745. [Google Scholar] [CrossRef]
- Zhu, R.Q.; Xing, L. Simulations and analysis of high-temperature proton exchange membrane fuel cell and its cooling system to power an automotive vehicle. Energy Convers. Manag. 2022, 278, 115182. [Google Scholar] [CrossRef]
- Huang, Y.C.; Xiao, X.L. Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis. Energy Convers. Manag. 2022, 254, 115221. [Google Scholar] [CrossRef]
- Song, Z.; Pan, Y. Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review. Appl. Energy 2021, 302, 117572. [Google Scholar] [CrossRef]
- Su, C.Q.; Sun, J.F. Thermal management control strategy of liquid-cooled fuel cell vehicle. Energy Rep. 2022, 8, 141–153. [Google Scholar] [CrossRef]
- He, L.G.; Yang, Y.Y. A review of thermal management of proton exchange membrane fuel cell systems. J. Renew. Sustain. Energy 2023, 15, 012703. [Google Scholar] [CrossRef]
- Cao, Q.M.; Min, H.T. A novel thermal management for PEM fuel cell stack combining phase change materials with liquid cooling under low temperature condition. Appl. Therm. Eng. 2024, 238, 121949. [Google Scholar] [CrossRef]
- Tao, Q.; Zhong, F. A review of nanofluids as coolants for thermal management systems in fuel cell vehicles. Nanomaterials 2023, 13, 2861. [Google Scholar] [CrossRef] [PubMed]
- Mock, J. Fuel Cell Coolant Optimization and Scale Up; Dynalene Inc.: Whitehall, PA, USA, 2011. [Google Scholar]
- Bargal, M.H.S.; Abdelkareem, M.A.A. Liquid cooling techniques in proton exchange membrane fuel cell stacks: A detailed survey. Alex. Eng. J. 2020, 59, 635–655. [Google Scholar] [CrossRef]
- Islam, M.R.; Andrews, J. Experimental investigation of using ZnO nano-coolants as coolants in a PEM fuel cell. Int. J. Hydrog. Energy 2017, 42, 19272–19286. [Google Scholar] [CrossRef]
- Islam, M.R.; Shabani, B. Electrical and thermal conductivities of 50/50 water-ethylene glycol based TiO2 nano-coolants to be used as coolants in PEM fuel cells. Energy Procedia 2017, 110, 101–108. [Google Scholar] [CrossRef]
- Zakaria, I.; Mohamed, W.A.N.W. Experimental investigation of Al2O3-water ethylene glycol mixture nano-coolant thermal behavior in a single cooling plate for PEM fuel cell application. Energy Procedia 2015, 79, 252–258. [Google Scholar] [CrossRef]
- Zakaria, I. Thermal analysis of Al2O3-water ethylene glycol mixture nano-coolant for single PEM fuel cell cooling plate: An experimental study. Int. J. Hydrog. Energy 2016, 41, 5096–5112. [Google Scholar] [CrossRef]
- Ilhan, B.; Kurt, M. Experimental investigation of heat transfer enhancement and viscosity change of hBN nano-coolants. Exp. Therm. Fluid Sci. 2016, 77, 272–283. [Google Scholar] [CrossRef]
- Johari, M.N.I.; Zakaria, I.A. Green-bio–glycol Al2O3-SiO2 hybrid nano-coolants for PEMFC: The thermal-electrical-hydraulic perspectives. Int. Commun. Heat Mass Transf. 2022, 131, 105870. [Google Scholar] [CrossRef]
- Khalid, S.; Zakaria, I.A. Thermal-electrical-hydraulic properties of Al2O3-SiO2 hybrid nano-coolants for advanced PEM fuel cell thermal management. J. Therm. Anal. Calorim. 2021, 143, 1555–1567. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Taherialekouhi, R. An experimental study on stability and thermal conductivity of water-graphene Oxide/Aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 145, 118751. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Bruggeman Von, D.A.G. Berechnung verschiedener physikalischer Konstanten von Heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper Aus Isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Res. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Yamada, E.; Ota, T. Effective thermal conductivity of dispersed materials. Heat Mass Transf. 1980, 13, 27–37. [Google Scholar] [CrossRef]
- Davis, R. The effective thermal conductivity of composite material spherical inclusions. Int. J. Thermophys. 1986, 7, 609–620. [Google Scholar] [CrossRef]
- Aybar, H.S.; Sharifpur, M. A review of thermal conductivity models of nanofluids. Heat Transf. Eng. 2015, 36, 1085–1110. [Google Scholar] [CrossRef]
- Azari, A.; Kalbasi, M. A thermal conductivity model for nanofluids heat transfer enhancement. Pet. Sci. Technol. 2014, 32, 91–99. [Google Scholar] [CrossRef]
- Koo, J.; Kleinsteuer, C. New thermal conductivity model for nanofluids. J. Nanopart. Res. 2004, 6, 577–588. [Google Scholar] [CrossRef]
- Li, X.Y. The solid-fluid interface: A comparison and further description using the layer model. Surf. Sci. 1993, 290, 403–412. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Chen, H. Effect of interface layer on the enhancement of thermal conductivity of SiC-Water nanofluids: Molecular dynamics simulation. J. Mol. Graph. Model. 2024, 127, 108696. [Google Scholar] [CrossRef] [PubMed]
- Li, M.J.; Li, J.M. A novel semi-empirical model on predicting the thermal conductivity of diathermic oil-based nanofluid for solar thermal application. Int. J. Heat Mass Transf. 2019, 138, 1002–1013. [Google Scholar] [CrossRef]
- Jiang, H.F. Mathematical Model and Medium-High Temperature Experimental Research of Nanofluid Effective Thermal Conductivity; Tsinghua University: Beijing, China, 2015. [Google Scholar]
- Xie, H.Q.; Motoo, F. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Ren, Y.; Xie, H. Effective thermal conductivity of nano-coolants containing spherical nanoparticles. J. Phys. D Appl. Phys. 2005, 38, 3958–3961. [Google Scholar] [CrossRef]
- Rizvi, I.H.; Jain, A. Mathematical modelling of thermal conductivity for nano-coolant considering interfacial nano-layer. Heat Mass Transf. 2013, 49, 595–600. [Google Scholar] [CrossRef]
- Tso, C.Y.; Fu, S.C. A semi-analytical model for the thermal conductivity of nano-coolants and determination of the nanolayer thickness. Int. J. Heat Mass Transf. 2014, 70, 202–214. [Google Scholar] [CrossRef]
- Tillman, P.; Hill, J.M. Determination of nanolayer thickness for a nano-coolant. Int. Commun. Heat Mass Transf. 2007, 34, 399–407. [Google Scholar] [CrossRef]
- Xue, Q.; Xu, W.M. A model of thermal conductivity of nano-coolants with interfacial shells. Mater. Chem. Phys. 2005, 90, 298–301. [Google Scholar] [CrossRef]
- Gai, G.S.; Tao, Z.D. Powder Engineering; Tsinghua University Press: Beijing, China, 2009. [Google Scholar]
- Islam, M.R.; Shabani, B. The potential of using nanofluids in PEM fuel cell cooling systems: A review. Renew. Sustain. Energy Rev. 2015, 48, 523–539. [Google Scholar] [CrossRef]
- Zhang, N. Operating Instructions of Xuanke Hydrogen LEG Series Antifreeze; Xuanke Hydrogen Energy Technology (Beijing) Co.: Beijing, China, 2020. [Google Scholar]
Author | Research/Time | Base Fluid | Nanoparticle | Volume Fraction |
---|---|---|---|---|
Zakaria [17] | Theory/2015 | W/EG 50:50 | Al2O3 | 0.1 vol%/0.5 vol% |
Zakaria [17] | Experiment/2015 | W/EG 50:50 | Al2O3 | 0.1 vol%/0.5 vol% |
Bargal [14] | Theory/2020 | W/EG 50:50 | Al2O3 | 0.05 vol%/2 vol% |
Zakaria [18] | Experiment/2016 | W/EG 50:50 | Al2O3 | 0.1 vol%/0.5 vol% |
W/EG 60:40 | ||||
Islam [15] | Theory/Experiment 2017 | W/EG 50:50 | TiO2 | 0.05 vol%~0.5 vol% |
Islam [15] | Experiment/2017 | W/EG 50:50 | ZnO | 0.05 vol%~0.5 vol% |
Zakaria [18] | Theory/2018 | W/EG 100:0 | Al2O3 | 0.1 vol%~0.5 vol% |
W/EG 50:50 | ||||
W/EG 60:40 | ||||
Zakaria [18] | Experiment/2018 | W/EG 100:0 W/EG 60:40 | Al2O3 | 0.1 vol%~0.5 vol% |
Ilhan [19] | Experiment/2016 | W/EG 50:50 | BN | 0.03 vol%~3 vol% |
Johari [20] | Experiment/2022 | W/EG 60:40 | Al2O3-SiO2 | 0.5 vol% |
Khalid [21] | Experiment/2021 | W/EG 60:40 | Al2O3-SiO2 | 0.5 vol% |
Nanoparticle Shape | Sphericity | Nanoparticle Shape | Sphericity | ||
---|---|---|---|---|---|
Spherical | 1.0 | Regular tetrahedron | 0.67 | ||
Cylinder | H = d | 0.87 | Regular octahedron | 0.83 | |
H = 2d | 0.83 | Cuboid | 1:2:2 | 0.77 | |
H = 4d | 0.73 | 1:2:4 | 0.68 | ||
Disc | H = d/2 | 0.83 | 1:4:4 | 0.64 | |
H = d/4 | 0.69 | Ellipsoid | 1:1:2 | 0.93 | |
H = d/10 | 0.58 | 1:1:4 | 0.78 | ||
Cuboid | 1:1:1 | 0.81 | 1:2:2 | 0.92 | |
1:1:2 | 0.77 | 1:2:4 | 0.79 | ||
1:1:4 | 0.68 | 1:4:4 | 0.70 |
Volume Fraction % | Freezing Point °C | Density | Volume Fraction % | Freezing Point °C | Density |
---|---|---|---|---|---|
46 | −32.2 | 1.068 | 54 | −43.9 | 1.078 |
47 | −33.9 | 1.069 | 55 | −45.6 | 1.081 |
48 | −35.0 | 1.070 | 56 | −46.7 | 1.082 |
49 | −36.1 | 1.072 | 57 | −47.8 | 1.083 |
50 | −37.8 | 1.073 | 58 | −48.9 | 1.084 |
51 | −38.9 | 1.074 | 59 | <−51.1 | 1.085 |
52 | −41.1 | 1.076 | 60 | <−51.1 | 1.086 |
53 | −42.2 | 1.077 | 65 | <−51.1 | 1.093 |
T (°C) | 50% | 55% | 60% |
---|---|---|---|
−5 | 0.3581 | 0.3443 | 0.3304 |
0 | 0.3633 | 0.3495 | 0.3356 |
5 | 0.3668 | 0.3529 | 0.3391 |
10 | 0.3720 | 0.3581 | 0.3425 |
15 | 0.3771 | 0.3616 | 0.3460 |
20 | 0.3806 | 0.3650 | 0.3495 |
25 | 0.3858 | 0.3702 | 0.3529 |
30 | 0.3893 | 0.3737 | 0.3564 |
35 | 0.3927 | 0.3771 | 0.3598 |
45 | 0.3979 | 0.3806 | 0.3633 |
60 | 0.4031 | 0.3858 | 0.3685 |
70 | 0.4083 | 0.3910 | 0.3720 |
80 | 0.4117 | 0.3944 | 0.3754 |
90 | 0.4152 | 0.3962 | 0.3771 |
100 | 0.4152 | 0.3979 | 0.3789 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Q.; Fu, B.; Zhong, F. Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells. Nanomaterials 2024, 14, 1710. https://doi.org/10.3390/nano14211710
Tao Q, Fu B, Zhong F. Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells. Nanomaterials. 2024; 14(21):1710. https://doi.org/10.3390/nano14211710
Chicago/Turabian StyleTao, Qi, Boao Fu, and Fei Zhong. 2024. "Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells" Nanomaterials 14, no. 21: 1710. https://doi.org/10.3390/nano14211710
APA StyleTao, Q., Fu, B., & Zhong, F. (2024). Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells. Nanomaterials, 14(21), 1710. https://doi.org/10.3390/nano14211710