The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy
Abstract
:1. Introduction
2. The Role of Point-Contact Spectroscopy
2.1. PCS Setup Configurations
2.2. Conduction Regimes in PCJ
2.3. Andreev Reflection
3. Theoretical Background
4. Results on BiS2-Based Superconductors
5. Conclusions
Funding
Conflicts of Interest
References
- Onnes, H.K. The Superconductivity of Mercury. Comm. Phys. Lab. Univ. Leiden 1911, 122, 122–124. [Google Scholar]
- Meissner, W.; Ochsenfeld, R. Ein Neuer Effekt Bei Eintritt Der Supraleitfähigkeit. Naturwissenschaften 1933, 21, 787–788. [Google Scholar] [CrossRef]
- Buzea, C.; Robbie, K. Assembling the Puzzle of Superconducting Elements: A Review. Supercond. Sci. Technol. 2005, 18, R1–R8. [Google Scholar] [CrossRef]
- Shimizu, K. Superconducting Elements under High Pressure. Phys. C Supercond. Its Appl. 2018, 552, 30–33. [Google Scholar] [CrossRef]
- Webb, G.W.; Marsiglio, F.; Hirsch, J.E. Superconductivity in the Elements, Alloys and Simple Compounds. Phys. C Supercond. Its Appl. 2015, 514, 17–27. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef]
- Martucciello, N.; Giubileo, F.; Grimaldi, G.; Corato, V. Introduction to the Focus on Superconductivity for Energy. Supercond. Sci. Technol. 2015, 28, 070201. [Google Scholar] [CrossRef]
- Santos, B.M.; Dias, F.J.; Trillaud, F.; Sotelo, G.G.; de Andrade Junior, R. A Review of Technology Readiness Levels for Superconducting Electric Machinery. Energies 2023, 16, 5955. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible highTc Superconductivity in the Ba-La-Cu-O System. Z. Für Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Wu, M.K.; Ashburn, J.R.; Torng, C.J.; Hor, P.H.; Meng, R.L.; Gao, L.; Huang, Z.J.; Wang, Y.Q.; Chu, C.W. Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett. 1987, 58, 908–910. [Google Scholar] [CrossRef]
- Zhou, X.; Lee, W.-S.; Imada, M.; Trivedi, N.; Phillips, P.; Kee, H.-Y.; Törmä, P.; Eremets, M. High-Temperature Superconductivity. Nat. Rev. Phys. 2021, 3, 462–465. [Google Scholar] [CrossRef]
- Lee, P.A.; Nagaosa, N.; Wen, X.-G. Doping a Mott Insulator: Physics of High-Temperature Superconductivity. Rev. Mod. Phys. 2006, 78, 17–85. [Google Scholar] [CrossRef]
- Tsuei, C.C.; Kirtley, J.R. Pairing Symmetry in Cuprate Superconductors. Rev. Mod. Phys. 2000, 72, 969–1016. [Google Scholar] [CrossRef]
- Maeno, Y.; Hashimoto, H.; Yoshida, K.; Nishizaki, S.; Fujita, T.; Bednorz, J.G.; Lichtenberg, F. Superconductivity in a Layered Perovskite without Copper. Nature 1994, 372, 532–534. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in Magnesium Diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Giubileo, F.; Roditchev, D.; Sacks, W.; Lamy, R.; Thanh, D.X.; Klein, J.; Miraglia, S.; Fruchart, D.; Marcus, J.; Monod, P. Two-Gap State Density in MgB 2 : A True Bulk Property Or A Proximity Effect? Phys. Rev. Lett. 2001, 87, 177008. [Google Scholar] [CrossRef]
- Bugoslavsky, Y.; Miyoshi, Y.; Perkins, G.K.; Berenov, A.V.; Lockman, Z.; MacManus-Driscoll, J.L.; Cohen, L.F.; Caplin, A.D.; Zhai, H.Y.; Paranthaman, M.P.; et al. Structure of the Superconducting Gap in MgB2 from Point-Contact Spectroscopy. Supercond. Sci. Technol. 2002, 15, 526. [Google Scholar] [CrossRef]
- Giubileo, F.; Roditchev, D.; Sacks, W.; Lamy, R.; Klein, J. Strong Coupling and Double-Gap Density of States in Superconducting MgB2. Europhys. Lett. (EPL) 2002, 58, 764–770. [Google Scholar] [CrossRef]
- Kortus, J.; Mazin, I.I.; Belashchenko, K.D.; Antropov, V.P.; Boyer, L.L. Superconductivity of Metallic Boron in MgB2. Phys. Rev. Lett. 2001, 86, 4656–4659. [Google Scholar] [CrossRef]
- Giubileo, F.; Bobba, F.; Scarfato, A.; Cucolo, A.M.; Kohen, A.; Roditchev, D.; Zhigadlo, N.D.; Karpinski, J. Local Tunneling Study of Three-Dimensional Order Parameter in the π Band of Al-Doped MgB2 Single Crystals. Phys. Rev. B 2007, 76, 024507. [Google Scholar] [CrossRef]
- Kohen, A.; Deutscher, G. Symmetry and Temperature Dependence of the Order Parameter in MgB2 from Point Contact Measurements. Phys. Rev. B 2001, 64, 060506. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.D.; Frederick, N.A.; Ho, P.-C.; Zapf, V.S.; Maple, M.B. Superconductivity and Heavy Fermion Behavior in PrOs4Sb12. Phys. Rev. B 2002, 65, 100506. [Google Scholar] [CrossRef]
- Xing, J.; Li, S.; Ding, X.; Yang, H.; Wen, H.-H. Superconductivity Appears in the Vicinity of Semiconducting-like Behavior in CeO1-xFxBiS2. Phys. Rev. B 2012, 86, 214518. [Google Scholar] [CrossRef]
- Flores-Livas, J.A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A Perspective on Conventional High-Temperature Superconductors at High Pressure: Methods and Materials. Phys. Rep. 2020, 856, 1–78. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Sun, D.; Minkov, V.S.; Mozaffari, S.; Sun, Y.; Ma, Y.; Chariton, S.; Prakapenka, V.B.; Eremets, M.I.; Balicas, L.; Balakirev, F.F. High-Temperature Superconductivity on the Verge of a Structural Instability in Lanthanum Superhydride. Nat. Commun. 2021, 12, 6863. [Google Scholar] [CrossRef]
- Li, D.; Lee, K.; Wang, B.Y.; Osada, M.; Crossley, S.; Lee, H.R.; Cui, Y.; Hikita, Y.; Hwang, H.Y. Superconductivity in an Infinite-Layer Nickelate. Nature 2019, 572, 624–627. [Google Scholar] [CrossRef]
- Di Cataldo, S.; Worm, P.; Tomczak, J.M.; Si, L.; Held, K. Unconventional Superconductivity without Doping in Infinite-Layer Nickelates under Pressure. Nat. Commun. 2024, 15, 3952. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, J.-F.; Zhan, B.; Lv, D.; Jiang, X.-Y.; Normand, B.; Xiang, T. Superconductivity in Nickelate and Cuprate Superconductors with Strong Bilayer Coupling. Phys. Rev. B 2024, 110, 024514. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Y.; Chen, Y.; Ding, X.; Leng, H.; Hu, Z.; Wu, X.; Yi, J.; Yu, X.; Breese, M.B.H.; et al. Robust Superconductivity in Infinite-Layer Nickelates. Adv. Sci. 2024, 11, 2305252. [Google Scholar] [CrossRef] [PubMed]
- Goodge, B.H.; Geisler, B.; Lee, K.; Osada, M.; Wang, B.Y.; Li, D.; Hwang, H.Y.; Pentcheva, R.; Kourkoutis, L.F. Resolving the Polar Interface of Infinite-Layer Nickelate Thin Films. Nat. Mater. 2023, 22, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Huo, M.; Hu, X.; Li, J.; Liu, Z.; Han, Y.; Tang, L.; Mao, Z.; Yang, P.; Wang, B.; et al. Signatures of Superconductivity near 80 K in a Nickelate under High Pressure. Nature 2023, 621, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-M.; Lin, H.-H. Pairing Mechanism in Multiband Superconductors. Sci. Rep. 2020, 10, 7439. [Google Scholar] [CrossRef] [PubMed]
- Giubileo, F.; Romeo, F.; Di Bartolomeo, A.; Mizuguchi, Y.; Romano, P. Probing Unconventional Pairing in LaO0.5F0.5BiS2 Layered Superconductor by Point Contact Spectroscopy. J. Phys. Chem. Solids 2018, 118, 192–199. [Google Scholar] [CrossRef]
- Eremets, M.I. Superconductivity at High Pressure. In Static and Dynamic High Pressure Mineral Physics; Fei, Y., Walter, M.J., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 368–386. ISBN 978-1-108-47975-2. [Google Scholar]
- Giubileo, F.; Piano, S.; Scarfato, A.; Bobba, F.; Di Bartolomeo, A.; Cucolo, A.M. A Tunneling Spectroscopy Study of the Pairing Symmetry in the Electron-Doped Pr1-xLaCexCuO4-y. J. Phys. Condens. Matter 2010, 22, 045702. [Google Scholar] [CrossRef]
- Mackenzie, A.P.; Maeno, Y. The Superconductivity of Sr2RuO4 and the Physics of Spin-Triplet Pairing. Rev. Mod. Phys. 2003, 75, 657–712. [Google Scholar] [CrossRef]
- Piano, S.; Bobba, F.; Giubileo, F.; Cucolo, A.M.; Gombos, M.; Vecchione, A. Pairing State in the Ruthenocuprate Superconductor RuSr2GdCu2O8: A Point-Contact Andreev Reflection Spectroscopy Study. Phys. Rev. B 2006, 73, 064514. [Google Scholar] [CrossRef]
- Morice, C.; Akashi, R.; Koretsune, T.; Saxena, S.S.; Arita, R. Weak Phonon-Mediated Pairing in BiS2 Superconductor from First Principles. Phys. Rev. B 2017, 95, 180505. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Fujihisa, H.; Gotoh, Y.; Suzuki, K.; Usui, H.; Kuroki, K.; Demura, S.; Takano, Y.; Izawa, H.; Miura, O. BiS2-Based Layered Superconductor Bi4O4S3. Phys. Rev. B 2012, 86, 220510. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, A.; Gahtori, B.; Shruti; Sharma, G.; Patnaik, S.; Awana, V.P.S. Bulk Superconductivity in Bismuth Oxysulfide Bi4O4S3. J. Am. Chem. Soc. 2012, 134, 16504–16507. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, Y.; Demura, S.; Deguchi, K.; Takano, Y.; Fujihisa, H.; Gotoh, Y.; Izawa, H.; Miura, O. Superconductivity in Novel BiS 2 -Based Layered Superconductor LaO1-xFxBiS2. J. Phys. Soc. Jpn. 2012, 81, 114725. [Google Scholar] [CrossRef]
- Demura, S.; Mizuguchi, Y.; Deguchi, K.; Okazaki, H.; Hara, H.; Watanabe, T.; James Denholme, S.; Fujioka, M.; Ozaki, T.; Fujihisa, H.; et al. New Member of BiS2-Based Superconductor NdO1-xFxBiS2. J. Phys. Soc. Jpn. 2013, 82, 033708. [Google Scholar] [CrossRef]
- Yazici, D.; Huang, K.; White, B.D.; Chang, A.H.; Friedman, A.J.; Maple, M.B. Superconductivity of F-Substituted LnOBiS2 (Ln=La, Ce, Pr, Nd, Yb) Compounds. Philos. Mag. 2013, 93, 673–680. [Google Scholar] [CrossRef]
- Jha, R.; Kumar, A.; Kumar Singh, S.; Awana, V.P.S. Synthesis and Superconductivity of New BiS2 Based Superconductor PrO0.5F0.5BiS2. J. Supercond. Nov. Magn. 2013, 26, 499–502. [Google Scholar] [CrossRef]
- Yazici, D.; Huang, K.; White, B.D.; Jeon, I.; Burnett, V.W.; Friedman, A.J.; Lum, I.K.; Nallaiyan, M.; Spagna, S.; Maple, M.B. Superconductivity Induced by Electron Doping in La1-xMxOBiS2 (M = Ti, Zr, Hf, Th). Phys. Rev. B 2013, 87, 174512. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Miura, A.; Kajitani, J.; Hiroi, T.; Miura, O.; Tadanaga, K.; Kumada, N.; Magome, E.; Moriyoshi, C.; Kuroiwa, Y. In-Plane Chemical Pressure Essential for Superconductivity in BiCh2-Based (Ch: S, Se) Layered Structure. Sci. Rep. 2015, 5, 14968. [Google Scholar] [CrossRef]
- Hiroi, T.; Kajitani, J.; Omachi, A.; Miura, O.; Mizuguchi, Y. Evolution of Superconductivity in BiS2-Based Superconductor LaO0.5F0.5Bi(S1−xSex)2. J. Phys. Soc. Jpn. 2015, 84, 024723. [Google Scholar] [CrossRef]
- Tan, S.G.; Li, L.J.; Liu, Y.; Tong, P.; Zhao, B.C.; Lu, W.J.; Sun, Y.P. Superconducting and Thermoelectric Properties of New Layered Superconductor Bi4O4S3. Phys. C Supercond. 2012, 483, 94–96. [Google Scholar] [CrossRef]
- Kotegawa, H.; Tomita, Y.; Tou, H.; Izawa, H.; Mizuguchi, Y.; Miura, O.; Demura, S.; Deguchi, K.; Takano, Y. Pressure Study of BiS2-Based Superconductors Bi4O4S3 and La(O,F)BiS2. J. Phys. Soc. Jpn. 2012, 81, 103702. [Google Scholar] [CrossRef]
- Nagao, M.; Miura, A.; Demura, S.; Deguchi, K.; Watauchi, S.; Takei, T.; Takano, Y.; Kumada, N.; Tanaka, I. Growth and Superconducting Properties of F-Substituted ROBiS2 (R=La, Ce, Nd) Single Crystals. Solid State Commun. 2014, 178, 33–36. [Google Scholar] [CrossRef]
- Higashinaka, R.; Miyazaki, R.; Mizuguchi, Y.; Miura, O.; Aoki, Y. Low-Temperature Enhancement in the Upper Critical Field of Underdoped LaO1−xFxBiS2 (x = 0.1–0.3). J. Phys. Soc. Jpn. 2014, 83, 075004. [Google Scholar] [CrossRef]
- Kase, N.; Terui, Y.; Nakano, T.; Takeda, N. Superconducting Gap Symmetry of the BiS2-Based Superconductor LaO0.5F0.5BiSSe Elucidated through Specific Heat Measurements. Phys. Rev. B 2017, 96, 214506. [Google Scholar] [CrossRef]
- Deguchi, K.; Mizuguchi, Y.; Demura, S.; Hara, H.; Watanabe, T.; Denholme, S.J.; Fujioka, M.; Okazaki, H.; Ozaki, T.; Takeya, H.; et al. Evolution of Superconductivity in LaO1−xFxBiS2 Prepared by High-Pressure Technique. Europhys. Lett. 2013, 101, 17004. [Google Scholar] [CrossRef]
- Awana, V.P.S.; Kumar, A.; Jha, R.; Kumar Singh, S.; Pal, A.; Shruti; Saha, J.; Patnaik, S. Appearance of Superconductivity in Layered LaO0.5F0.5BiS2. Solid State Commun. 2013, 157, 21–23. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Miyake, A.; Akiba, K.; Tokunaga, M.; Kajitani, J.; Miura, O. Anisotropic Upper Critical Field of the BiS2-Based Superconductor LaO0.5F0.5BiS2. Phys. Rev. B 2014, 89, 174515. [Google Scholar] [CrossRef]
- Chan, Y.C.; Yip, K.Y.; Cheung, Y.W.; Chan, Y.T.; Niu, Q.; Kajitani, J.; Higashinaka, R.; Matsuda, T.D.; Yanase, Y.; Aoki, Y.; et al. Anisotropic Two-Gap Superconductivity and the Absence of a Pauli Paramagnetic Limit in Single-Crystalline LaO0.5F0.5BiS2. Phys. Rev. B 2018, 97, 104509. [Google Scholar] [CrossRef]
- Jha, R.; Awana, V.P.S. Effect of Se Doping in Recently Discovered Layered Bi4O4S3 Superconductor. Phys. C Supercond. 2014, 498, 45–49. [Google Scholar] [CrossRef]
- Selvan, G.K.; Thakur, G.S.; Manikandan, K.; Uwatoko, Y.; Haque, Z.; Gupta, L.C.; Ganguli, A.K.; Arumugam, S. Upper Critical Field, Critical Current Density and Activation Energy of the New La1−xSmxO0.5F0.5BiS2 (x = 0.2, 0.8) Superconductors. J. Phys. Soc. Jpn. 2015, 84, 124701. [Google Scholar] [CrossRef]
- Kalai Selvan, G.; Thakur, G.S.; Manikandan, K.; Banerjee, A.; Haque, Z.; Gupta, L.C.; Ganguli, A.K.; Arumugam, S. Superconductivity in La1−xSmxO0.5F0.5BiS2 (x = 0.2, 0.8) under Hydrostatic Pressure. J. Phys. D Appl. Phys. 2016, 49, 275002. [Google Scholar] [CrossRef]
- Shao, J.; Liu, Z.; Yao, X.; Pi, L.; Tan, S.; Zhang, C.; Zhang, Y. Bulk Superconductivity in Single-Phase Bi3O2S3. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2014, 8, 845–848. [Google Scholar] [CrossRef]
- Li, L.; Parker, D.; Babkevich, P.; Yang, L.; Ronnow, H.M.; Sefat, A.S. Superconductivity in Semimetallic Bi3O2S3. Phys. Rev. B 2015, 91, 104511. [Google Scholar] [CrossRef]
- Nagasaka, K.; Nishida, A.; Jha, R.; Kajitani, J.; Miura, O.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; Miura, A.; Moriyoshi, C.; et al. Intrinsic Phase Diagram of Superconductivity in the BiCh2-Based System Without In-Plane Disorder. J. Phys. Soc. Jpn. 2017, 86, 074701. [Google Scholar] [CrossRef]
- Hoshi, K.; Goto, Y.; Mizuguchi, Y. Selenium Isotope Effect in the Layered Bismuth Chalcogenide Superconductor LaO0.6F0.4Bi(S,Se)2. Phys. Rev. B 2018, 97, 094509. [Google Scholar] [CrossRef]
- Tanaka, M.; Yamaki, T.; Matsushita, Y.; Fujioka, M.; Denholme, S.J.; Yamaguchi, T.; Takeya, H.; Takano, Y. Site Selectivity on Chalcogen Atoms in Superconducting La(O,F)BiSSe. Appl. Phys. Lett. 2015, 106, 112601. [Google Scholar] [CrossRef]
- Tanaka, M.; Nagao, M.; Matsumoto, R.; Kataoka, N.; Ueta, I.; Tanaka, H.; Watauchi, S.; Tanaka, I.; Takano, Y. Superconductivity and Its Enhancement under High Pressure in “F-Free” Single Crystals of CeOBiS2. J. Alloys Compd. 2017, 722, 467–473. [Google Scholar] [CrossRef]
- Sugimoto, T.; Paris, E.; Wakita, T.; Terashima, K.; Yokoya, T.; Barinov, A.; Kajitani, J.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; et al. Metallic Phase in Stoichiometric CeOBiS2 Revealed by Space-Resolved ARPES. Sci. Rep. 2018, 8, 2011. [Google Scholar] [CrossRef]
- Shao, J.; Liu, Z.; Yao, X.; Zhang, L.; Pi, L.; Tan, S.; Zhang, C.; Zhang, Y. Superconducting Properties of BiSe2-Based LaO1−xFxBiSe2 Single Crystals. Europhys. Lett. 2014, 107, 37006. [Google Scholar] [CrossRef]
- Fujioka, M.; Tanaka, M.; Denholme, S.J.; Yamaki, T.; Takeya, H.; Yamaguchi, T.; Takano, Y. Pressure-Induced Phase Transition for Single-Crystalline LaO0.5F0.5BiSe2. Europhys. Lett. 2014, 108, 47007. [Google Scholar] [CrossRef]
- Jha, R.; Awana, V.P.S. Anomalous Impact of Hydrostatic Pressure on Superconductivity of Polycrystalline LaO0.5F0.5BiSe2. J. Supercond. Nov. Magn. 2015, 28, 2229–2233. [Google Scholar] [CrossRef]
- Pallecchi, I.; Lamura, G.; Putti, M.; Kajitani, J.; Mizuguchi, Y.; Miura, O.; Demura, S.; Deguchi, K.; Takano, Y. Effect of High-Pressure Annealing on the Normal-State Transport of LaO0.5F0.5BiS2. Phys. Rev. B 2014, 89, 214513. [Google Scholar] [CrossRef]
- Tomita, T.; Ebata, M.; Soeda, H.; Takahashi, H.; Fujihisa, H.; Gotoh, Y.; Mizuguchi, Y.; Izawa, H.; Miura, O.; Demura, S.; et al. Pressure-Induced Enhancement of Superconductivity and Structural Transition in BiS2-Layered LaO1−xFxBiS2. J. Phys. Soc. Jpn. 2014, 83, 063704. [Google Scholar] [CrossRef]
- Omachi, A.; Kajitani, J.; Hiroi, T.; Miura, O.; Mizuguchi, Y. High-Temperature Thermoelectric Properties of Novel Layered Bismuth-Sulfide LaO1−xFxBiS2. J. Appl. Phys. 2014, 115, 083909. [Google Scholar] [CrossRef]
- Fujioka, M.; Nagao, M.; Denholme, S.J.; Tanaka, M.; Takeya, H.; Yamaguchi, T.; Takano, Y. High-Tc Phase of PrO0.5F0.5BiS2 Single Crystal Induced by Uniaxial Pressure. Appl. Phys. Lett. 2014, 105, 052601. [Google Scholar] [CrossRef]
- Kajitani, J.; Deguchi, K.; Hiroi, T.; Omachi, A.; Demura, S.; Takano, Y.; Miura, O.; Mizuguchi, Y. Enhancement of Tc by Uniaxial Lattice Contraction in BiS2-Based Superconductor PrO0.5F0.5BiS2. J. Phys. Soc. Jpn. 2014, 83, 065002. [Google Scholar] [CrossRef]
- Nagao, M.; Miura, A.; Watauchi, S.; Takano, Y.; Tanaka, I. C-Axis Electrical Resistivity of PrO1−aFaBiS2 Single Crystals. Jpn. J. Appl. Phys. 2015, 54, 083101. [Google Scholar] [CrossRef]
- Takahashi, N.; Nagao, M.; Miura, A.; Watauchi, S.; Tadanaga, K.; Takano, Y.; Tanaka, I. Synthesis of Bi2(O,F)S2 Superconductors by NaF Treatment. J. Ceram. Soc. Jpn. 2018, 126, 591–593. [Google Scholar] [CrossRef]
- Okada, T.; Ogino, H.; Shimoyama, J.; Kishio, K. Topotactic Synthesis of a New BiS2-Based Superconductor Bi2(O,F)S2. Appl. Phys. Express 2015, 8, 023102. [Google Scholar] [CrossRef]
- Shao, J.; Yao, X.; Liu, Z.; Pi, L.; Tan, S.; Zhang, C.; Zhang, Y. Superconductivity in BiO1−xFxBiS2 and Possible Parent Phase of Bi4O4S3 Superconductor. Supercond. Sci. Technol. 2014, 28, 015008. [Google Scholar] [CrossRef]
- Fang, Y.; Wolowiec, C.T.; Breindel, A.J.; Yazici, D.; Ho, P.-C.; Maple, M.B. Upper Critical Magnetic Field of LnO0.5F0.5BiS2 (Ln = La, Nd) Superconductors at Ambient and High Pressure. Supercond. Sci. Technol. 2017, 30, 115004. [Google Scholar] [CrossRef]
- Jha, R.; Awana, V.P.S. Superconducting Properties of BiS2-Based Superconductor NdO1−xFxBiS2 (x = 0 to 0.9). Mater. Res. Express 2014, 1, 016002. [Google Scholar] [CrossRef]
- Wang, X.B.; Nie, S.M.; Wang, H.P.; Zheng, P.; Wang, P.; Dong, T.; Weng, H.M.; Wang, N.L. Optical Spectroscopy Study of Nd(O,F)BiS2 Single Crystals. Phys. Rev. B 2014, 90, 054507. [Google Scholar] [CrossRef]
- Jiao, L.; Weng, Z.; Liu, J.; Zhang, J.; Pang, G.; Guo, C.; Gao, F.; Zhu, X.; Wen, H.-H.; Yuan, H.Q. Evidence for Nodeless Superconductivity in NdO1−xFxBiS2 (x = 0.3 and 0.5) Single Crystals. J. Phys. Condens. Matter 2015, 27, 225701. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.R.; Yang, H.F.; Shen, D.W.; Jiang, J.; Niu, X.H.; Feng, D.L.; Du, Y.P.; Wan, X.G.; Liu, J.Z.; Zhu, X.Y.; et al. Electronic Structure of Single-Crystalline NdO0.5F0.5BiS2 Studied by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2014, 90, 045116. [Google Scholar] [CrossRef]
- Kajitani, J.; Hiroi, T.; Omachi, A.; Miura, O.; Mizuguchi, Y. Increase in Tcand Change of Crystal Structure by High-Pressure Annealing in BiS2-Based Superconductor CeO0.3F0.7BiS2. J. Supercond. Nov. Magn. 2015, 28, 1129–1133. [Google Scholar] [CrossRef]
- Jha, R.; Awana, V.P.S. Superconductivity in Layered CeO0.5F0.5BiS2. J. Supercond. Nov. Magn. 2014, 27, 1–4. [Google Scholar] [CrossRef]
- Wolowiec, C.T.; White, B.D.; Jeon, I.; Yazici, D.; Huang, K.; Maple, M.B. Enhancement of Superconductivity near the Pressure-Induced Semiconductor–Metal Transition in the BiS2-Based Superconductors LnO0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd). J. Phys. Condens. Matter 2013, 25, 422201. [Google Scholar] [CrossRef]
- Wolowiec, C.T.; Yazici, D.; White, B.D.; Huang, K.; Maple, M.B. Pressure-Induced Enhancement of Superconductivity and Suppression of Semiconducting Behavior in LnO0.5F0.5BiS2 (Ln = La,Ce) Compounds. Phys. Rev. B 2013, 88, 064503. [Google Scholar] [CrossRef]
- Daghero, D.; Gonnelli, R.S. Probing Multiband Superconductivity by Point-Contact Spectroscopy. Supercond. Sci. Technol. 2010, 23, 043001. [Google Scholar] [CrossRef]
- Naidyuk, Y.G.; Yanson, I.K. Point-Contact Spectroscopy; Springer Series in Solid-State Sciences; Springer: New York, NY, USA, 2005; Volume 145, ISBN 978-1-4419-1938-0. [Google Scholar]
- Yanson, I.K. Nonlinear Effects in the Electric Conductivity of Point Junctions and Electron-Phonon Interaction in Normal Metals. Zhurnal Ehksperimental’noj I Teor. Fiz. 1974, 66, 1035–1050. [Google Scholar]
- Baltz, V.; Naylor, A.D.; Seemann, K.M.; Elder, W.; Sheen, S.; Westerholt, K.; Zabel, H.; Burnell, G.; Marrows, C.H.; Hickey, B.J. Conductance Features in Point Contact Andreev Reflection Spectra. J. Phys. Condens. Matter 2009, 21, 095701. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, H.; Raychaudhuri, A.K. Modeling Tunneling Data of Normal Metal-Oxide Superconductor Point Contact Junctions. Phys. C Supercond. 1992, 190, 229–233. [Google Scholar] [CrossRef]
- Blonder, G.E.; Tinkham, M. Metallic to Tunneling Transition in Cu-Nb Point Contacts. Phys. Rev. B 1983, 27, 112–118. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Daghero, D.; Ummarino, G.A.; Stepanov, V.A.; Jun, J.; Kazakov, S.M.; Karpinski, J. Direct Evidence for Two-Band Superconductivity in MgB2 Single Crystals from Directional Point-Contact Spectroscopy in Magnetic Fields. Phys. Rev. Lett. 2002, 89, 247004. [Google Scholar] [CrossRef] [PubMed]
- Daghero, D.; Gonnelli, R.S.; Ummarino, G.A.; Stepanov, V.A.; Jun, J.; Kazakov, S.M.; Karpinski, J. Point-Contact Spectroscopy in MgB2 Single Crystals in Magnetic Field. Phys. C Supercond. 2003, 385, 255–263. [Google Scholar] [CrossRef]
- Sharvin, Y.V. A Possible Method for Studying Fermi Surfaces. J. Exp. Theor. Phys. 1963, 21, 655. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Dover Publishing: New York, NY, USA, 1961; Volume 1, ISBN 978-0-486-60636-1. [Google Scholar]
- Wexler, G. The Size Effect and the Non-Local Boltzmann Transport Equation in Orifice and Disk Geometry. Proc. Phys. Soc. 1966, 89, 927. [Google Scholar] [CrossRef]
- Andreev, A.F. Thermal Conductivity of the Intermediate State of Superconductors. Sov. Phys. JEPT 1965, 20, 1490–1493. [Google Scholar]
- Saint-James, D. Excitations Élémentaires Au Voisinage de La Surface de Séparation d’un Métal Normal et d’un Métal Supraconducteur. J. Phys. Fr. 1964, 25, 899–905. [Google Scholar] [CrossRef]
- de Gennes, P.G. Superconductivity of Metals and Alloys; W. A. Benjamin, Inc.: New York, NY, USA, 1966. [Google Scholar]
- Huang, Q.; Zasadzinski, J.F.; Gray, K.E. Phonon Spectroscopy of Superconducting Nb Using Point-Contact Tunneling. Phys. Rev. B 1990, 42, 7953–7959. [Google Scholar] [CrossRef]
- Duif, A.M.; Jansen, A.G.M.; Wyder, P. Point-Contact Spectroscopy. J. Phys. Condens. Matter 1989, 1, 3157–3189. [Google Scholar] [CrossRef]
- Sheet, G.; Mukhopadhyay, S.; Raychaudhuri, P. Role of Critical Current on the Point-Contact Andreev Reflection Spectra between a Normal Metal and a Superconductor. Phys. Rev. B 2004, 69, 134507. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Biswas, A.; Dagan, Y.; Ott, R.A.; Greene, R.L. Point-Contact Spectroscopy of the Electron-Doped Cuprate Superconductor Pr2-xCexCuO4: The Dependence of Conductance-Voltage Spectra on Cerium Doping, Barrier Strength, and Magnetic Field. Phys. Rev. B 2003, 68, 024502. [Google Scholar] [CrossRef]
- Yates, K.A.; Cohen, L.F.; Ren, Z.-A.; Yang, J.; Lu, W.; Dong, X.-L.; Zhao, Z.-X. Point Contact Andreev Reflection Spectroscopy of NdFeAsO0.85. Supercond. Sci. Technol. 2008, 21, 092003. [Google Scholar] [CrossRef]
- Biswas, A.; Fournier, P.; Qazilbash, M.M.; Smolyaninova, V.N.; Balci, H.; Greene, R.L. Evidence of a d- to s-Wave Pairing Symmetry Transition in the Electron-Doped Cuprate Superconductor Pr2-xCexCuO4. Phys. Rev. Lett. 2002, 88, 207004. [Google Scholar] [CrossRef]
- Akimenko, A.I.; Goll, G.; Löhneysen, H.v.; Gudimenko, V.A. Distribution of Superconducting Energy Gaps in GdBa2Cu3O7 Obtained from Point-Contact Spectroscopy. Phys. Rev. B 1992, 46, 6409–6412. [Google Scholar] [CrossRef]
- Piano, S.; Bobba, F.; Giubileo, F.; Santis, A.D.; Cucolo, A.M. Point Contact Spectroscopy on Ferromagnetic/Superconducting Heterostructures. Phys. C Supercond. 2007, 460–462, 886–887. [Google Scholar] [CrossRef]
- Wei, J.Y.T.; Yeh, N.-C.; Garrigus, D.F.; Strasik, M. Directional Tunneling and Andreev Reflection on YBa2Cu3O7-δ Single Crystals: Predominance of d-Wave Pairing Symmetry Verified with the Generalized Blonder, Tinkham, and Klapwijk Theory. Phys. Rev. Lett. 1998, 81, 2542–2545. [Google Scholar] [CrossRef]
- Piano, S.; Bobba, F.; Giubileo, F.; Vecchione, A.; Cucolo, A.M. Point-Contact Spectroscopy on RuSr2GdCu2O8. J. Phys. Chem. Solids 2006, 67, 384–386. [Google Scholar] [CrossRef]
- Piano, S.; Bobba, F.; Giubileo, F.; Cucolo, A.M.; Vecchione, A. Point contact study of the superconducting order parameter in RuSr2GdCu2O8. Int. J. Mod. Phys. B 2005, 19, 323–325. [Google Scholar] [CrossRef]
- Giubileo, F.; Bobba, F.; Scarfato, A.; Piano, S.; Aprili, M.; Cucolo, A.M. Temperature Evolution of Subharmonic Gap Structures in MgB2/Nb Point-Contacts. Phys. C Supercond. Its Appl. 2007, 460–462, 587–588. [Google Scholar] [CrossRef]
- Takasaki, T.; Ekino, T.; Ribeiro, R.A.; Muranaka, T.; Fujii, H.; Akimitsu, J. Point-Contact Spectroscopy Measurements of Binary Superconductor MgB2. Phys. C Supercond. 2005, 426–431, 300–303. [Google Scholar] [CrossRef]
- Lee, S.; Khim, Z.G.; Chong, Y.; Moon, S.H.; Lee, H.N.; Kim, H.G.; Oh, B.; Jip Choi, E. Measurement of the Superconducting Gap of MgB2 by Point Contact Spectroscopy. Phys. C Supercond. 2002, 377, 202–207. [Google Scholar] [CrossRef]
- Samuely, P.; Szabó, P.; Pribulová, Z.; Kačmarčík, J. Point-Contact Spectroscopy of Multigap Superconductors. In Nanoscience and Engineering in Superconductivity; Moshchalkov, V., Woerdenweber, R., Lang, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 187–210. ISBN 978-3-642-15137-8. [Google Scholar]
- Szabó, P.; Samuely, P.; Pribulová, Z.; Angst, M.; Bud’ko, S.; Canfield, P.C.; Marcus, J. Point-Contact Spectroscopy of Al- and C-Doped MgB2: Superconducting Energy Gaps and Scattering Studies. Phys. Rev. B 2007, 75, 144507. [Google Scholar] [CrossRef]
- Szabó, P.; Samuely, P.; Kačmarčík, J.; Klein, T.; Marcus, J.; Fruchart, D.; Miraglia, S.; Marcenat, C.; Jansen, A.G.M. Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact Spectroscopy. Phys. Rev. Lett. 2001, 87, 137005. [Google Scholar] [CrossRef] [PubMed]
- Samuely, P.; Szabó, P.; Kačmarčík, J.; Klein, T.; Jansen, A.G.M. Point-Contact Spectroscopy of MgB2. Phys. C Supercond. 2003, 385, 244–254. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Daghero, D.; Calzolari, A.; Ummarino, G.A.; Dellarocca, V.; Stepanov, V.A.; Kazakov, S.M.; Karpinski, J.; Portesi, C.; Monticone, E.; et al. Point-Contact Spectroscopy in MgB2: From Fundamental Physics to Thin-Film Characterization. Supercond. Sci. Technol. 2004, 17, S93. [Google Scholar] [CrossRef]
- Romano, P.; Avitabile, F.; Nigro, A.; Grimaldi, G.; Leo, A.; Shu, L.; Zhang, J.; Di Bartolomeo, A.; Giubileo, F. Transport and Point Contact Measurements on Pr1−xCexPt4Ge12 Superconducting Polycrystals. Nanomaterials 2020, 10, 1810. [Google Scholar] [CrossRef]
- Romano, P.; Avitabile, F.; Di Bartolomeo, A.; Giubileo, F. Point Contact Spectroscopy: A Powerful Technique for the Low Temperature Characterization of Superconducting Materials. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27–29 June 2022; pp. 532–537. [Google Scholar]
- Arham, H.Z.; Greene, L.H. Point Contact Spectroscopy of Fe Pnictides and Chalcogenides in the Normal State. Curr. Opin. Solid State Mater. Sci. 2013, 17, 81–88. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Daghero, D.; Tortello, M.; Ummarino, G.A.; Stepanov, V.A.; Kremer, R.K.; Kim, J.S.; Zhigadlo, N.D.; Karpinski, J. Point-Contact Andreev-Reflection Spectroscopy in ReFeAsO1−xFx (Re = La, Sm): Possible Evidence for Two Nodeless Gaps. Phys. C Supercond. 2009, 469, 512–520. [Google Scholar] [CrossRef]
- Lu, X.; Park, W.K.; Yuan, H.Q.; Chen, G.F.; Luo, G.L.; Wang, N.L.; Sefat, A.S.; McGuire, M.A.; Jin, R.; Sales, B.C.; et al. Point-Contact Spectroscopic Studies on Normal and Superconducting AFe2As2-Type Iron Pnictide Single Crystals. Supercond. Sci. Technol. 2010, 23, 054009. [Google Scholar] [CrossRef]
- Naidyuk, Y.G.; Kvitnitskaya, O.E.; Gamayunova, N.V.; Bashlakov, D.L.; Tyutrina, L.V.; Fuchs, G.; Hühne, R.; Chareev, D.A.; Vasiliev, A.N. Superconducting Gaps in FeSe Studied by Soft Point-Contact Andreev Reflection Spectroscopy. Phys. Rev. B 2017, 96, 094517. [Google Scholar] [CrossRef]
- Daghero, D.; Tortello, M.; Ummarino, G.A.; Gonnelli, R.S. Directional Point-Contact Andreev-Reflection Spectroscopy of Fe-Based Superconductors: Fermi Surface Topology, Gap Symmetry, and Electron–Boson Interaction. Rep. Prog. Phys. 2011, 74, 124509. [Google Scholar] [CrossRef]
- Zhan, H.-X.; Lin, Y.-C.; Zhao, Y.-Q.; Zuo, H.-Y.; Wang, X.-Y.; Ma, X.-Y.; Li, C.-H.; Luo, H.-Q.; Chen, G.-F.; Li, S.-L.; et al. Anisotropic S-Wave Gap in the Vicinity of a Quantum Critical Point in Superconducting BaFe2(As1–xPx)2 Single Crystals: A Study of Point-Contact Spectroscopy. Chin. Phys. Lett. 2024, 41, 047402. [Google Scholar] [CrossRef]
- Daghero, D.; Piatti, E.; Zhigadlo, N.D.; Ummarino, G.A.; Barbero, N.; Shiroka, T. Superconductivity of Underdoped PrFeAs(O,F) Investigated via Point-Contact Spectroscopy and Nuclear Magnetic Resonance. Phys. Rev. B 2020, 102, 104513. [Google Scholar] [CrossRef]
- Fogelström, M.; Park, W.K.; Greene, L.H.; Goll, G.; Graf, M.J. Point-Contact Spectroscopy in Heavy-Fermion Superconductors. Phys. Rev. B 2010, 82, 014527. [Google Scholar] [CrossRef]
- Goll, G.; Brugger, T.; Marz, M.; Kontermann, S.; Löhneysen, H.v.; Sayles, T.; Maple, M.B. Point-Contact Spectroscopy on Heavy-Fermion Superconductors. Phys. B Condens. Matter 2006, 378–380, 665–668. [Google Scholar] [CrossRef]
- Motoyama, G.; Ogawa, S.; Matsubayashi, K.; Fujiwara, K.; Miyoshi, K.; Nishigori, S.; Mutou, T.; Yamaguchi, A.; Sumiyama, A.; Uwatoko, Y. Point-Contact Spectroscopy of Heavy Fermion Compounds CeCu6 and CeAl3 in Magnetic Field. Phys. Procedia 2015, 75, 296–302. [Google Scholar] [CrossRef]
- Onuki, R.; Sumiyama, A.; Oda, Y.; Yasuda, T.; Settai, R.; Ōnuki, Y. Point-Contact Spectroscopy of the Heavy-Fermion Superconductor CePt3Si. J. Phys. Condens. Matter 2009, 21, 075703. [Google Scholar] [CrossRef]
- Sakai, Y.; Motoyama, G.; Yamaguchi, A.; Sumiyama, A.; Yamamura, A.; Sato, I. Development of Point-Contact Spectroscopy of Heavy-Fermion Superconductors under Pressure. J. Phys. Soc. Jpn. 2012, 81, SB068. [Google Scholar] [CrossRef]
- Sumiyama, A.; Onuki, R.; Oda, Y.; Shishido, H.; Settai, R.; Ōnuki, Y. Point-Contact Study of the Heavy-Fermion Superconductor CeCoIn5. J. Phys. Chem. Solids 2008, 69, 3018–3021. [Google Scholar] [CrossRef]
- Yin, L.; Che, L.; Le, T.; Chen, Y.; Zhang, Y.; Lee, H.; Gnida, D.; Thompson, J.D.; Kaczorowski, D.; Lu, X. Point-Contact Spectroscopy of Heavy Fermion Superconductors Ce2PdIn8 and Ce3PdIn11 in Comparison with CeCoIn5. J. Phys. Condens. Matter 2021, 33, 205603. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Ji, H.; Luo, J.; Yan, D.; Shi, Y.; Wang, J. Point-Contact Andreev Reflection Measurements on ZrRuAs Single Crystals. Low Temp. Phys. 2023, 49, 841–846. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, J.; Wang, Y.; Shan, L.; Luo, Q.; Wang, W.; Wen, H.-H. Isotropic S-Wave Pairing Symmetry in Non-Centrosymmetric Re3W Revealed by Point-Contact Spectroscopy. Supercond. Sci. Technol. 2008, 21, 075011. [Google Scholar] [CrossRef]
- Parab, P.; Singh, D.; Haram, S.; Singh, R.P.; Bose, S. Point Contact Andreev Reflection Studies of a Non-Centro Symmetric Superconductor Re6Zr. Sci. Rep. 2019, 9, 2498. [Google Scholar] [CrossRef]
- Dai, W.; Richardella, A.; Du, R.; Zhao, W.; Liu, X.; Liu, C.X.; Huang, S.-H.; Sankar, R.; Chou, F.; Samarth, N.; et al. Proximity-Effect-Induced Superconducting Gap in Topological Surface States—A Point Contact Spectroscopy Study of NbSe2/Bi2Se3 Superconductor-Topological Insulator Heterostructures. Sci. Rep. 2017, 7, 7631. [Google Scholar] [CrossRef]
- Naidyuk, Y.; Kvitnitskaya, O.; Bashlakov, D.; Aswartham, S.; Morozov, I.; Chernyavskii, I.; Fuchs, G.; Drechsler, S.-L.; Hühne, R.; Nielsch, K.; et al. Surface Superconductivity in the Weyl Semimetal MoTe2 Detected by Point Contact Spectroscopy. 2D Mater. 2018, 5, 045014. [Google Scholar] [CrossRef]
- Soulen, R.J.; Byers, J.M.; Osofsky, M.S.; Nadgorny, B.; Ambrose, T.; Cheng, S.F.; Broussard, P.R.; Tanaka, C.T.; Nowak, J.; Moodera, J.S.; et al. Measuring the Spin Polarization of a Metal with a Superconducting Point Contact. Science 1998, 282, 85–88. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Palanisami, A.; Louie, R.N.; Buhrman, R.A. Probing Ferromagnets with Andreev Reflection. Phys. Rev. Lett. 1998, 81, 3247–3250. [Google Scholar] [CrossRef]
- Strijkers, G.J.; Ji, Y.; Yang, F.Y.; Chien, C.L.; Byers, J.M. Andreev Reflections at Metal/Superconductor Point Contacts: Measurement and Analysis. Phys. Rev. B 2001, 63, 104510. [Google Scholar] [CrossRef]
- Kant, C.H.; Kurnosikov, O.; Filip, A.T.; LeClair, P.; Swagten, H.J.M.; De Jonge, W.J.M. Origin of Spin-Polarization Decay in Point-Contact Andreev Reflection. Phys. Rev. B 2002, 66, 212403. [Google Scholar] [CrossRef]
- DeSisto, W.J.; Broussard, P.R.; Ambrose, T.F.; Nadgorny, B.E.; Osofsky, M.S. Highly Spin-Polarized Chromium Dioxide Thin Films Prepared by Chemical Vapor Deposition from Chromyl Chloride. Appl. Phys. Lett. 2000, 76, 3789–3791. [Google Scholar] [CrossRef]
- Löfwander, T.; Grein, R.; Eschrig, M. Is CrO2 Fully Spin Polarized? Analysis of Andreev Spectra and Excess Current. Phys. Rev. Lett. 2010, 105, 207001. [Google Scholar] [CrossRef] [PubMed]
- Nadgorny, B.; Soulen, R.J.; Osofsky, M.S.; Mazin, I.I.; Laprade, G.; Van De Veerdonk, R.J.M.; Smits, A.A.; Cheng, S.F.; Skelton, E.F.; Qadri, S.B. Transport Spin Polarization of NixFe1−x: Electronic Kinematics and Band Structure. Phys. Rev. B 2000, 61, R3788–R3791. [Google Scholar] [CrossRef]
- Nadgorny, B.; Mazin, I.I.; Osofsky, M.; Soulen, R.J.; Broussard, P.; Stroud, R.M.; Singh, D.J.; Harris, V.G.; Arsenov, A.; Mukovskii, Y. Origin of High Transport Spin Polarization in La0.7Sr0.3MnO3: Direct Evidence for Minority Spin States. Phys. Rev. B 2001, 63, 184433. [Google Scholar] [CrossRef]
- Ji, Y.; Chien, C.L.; Tomioka, Y.; Tokura, Y. Measurement of Spin Polarization of Single Crystals of La0.7Sr0.3MnO3 and La0.6Sr0.4MnO3. Phys. Rev. B 2002, 66, 012410. [Google Scholar] [CrossRef]
- Raychaudhuri, P.; Mackenzie, A.P.; Reiner, J.W.; Beasley, M.R. Transport Spin Polarization in SrRuO3 Measured through Point-Contact Andreev Reflection. Phys. Rev. B 2003, 67, 020411. [Google Scholar] [CrossRef]
- Nadgorny, B.; Osofsky, M.S.; Singh, D.J.; Woods, G.T.; Soulen, R.J., Jr.; Lee, M.K.; Bu, S.D.; Eom, C.B. Measurements of Spin Polarization of Epitaxial SrRuO3 Thin Films. Appl. Phys. Lett. 2003, 82, 427–429. [Google Scholar] [CrossRef]
- Romeo, F.; Giubileo, F.; Citro, R.; Di Bartolomeo, A.; Attanasio, C.; Cirillo, C.; Polcari, A.; Romano, P. Resonant Andreev Spectroscopy in Normal-Metal/Thin-Ferromagnet/Superconductor Device: Theory and Application. Sci. Rep. 2015, 5, 17544. [Google Scholar] [CrossRef]
- Catapano, M.; Romeo, F.; Citro, R.; Giubileo, F. Generalized Blonder-Tinkham-Klapwijk Theory and Conductance Spectra with Particle-Hole Mixing Interface Potential. Eur. Phys. J. B 2015, 88, 329. [Google Scholar] [CrossRef]
- Giubileo, F.; Romeo, F.; Citro, R.; Di Bartolomeo, A.; Attanasio, C.; Cirillo, C.; Polcari, A.; Romano, P. Point Contact Andreev Reflection Spectroscopy on Ferromagnet/Superconductor Bilayers. Phys. C Supercond. Its Appl. 2014, 503, 158–161. [Google Scholar] [CrossRef]
- Blonder, G.E.; Tinkham, M.; Klapwijk, T.M. Transition from Metallic to Tunneling Regimes in Superconducting Microconstrictions: Excess Current, Charge Imbalance, and Supercurrent Conversion. Phys. Rev. B 1982, 25, 4515–4532. [Google Scholar] [CrossRef]
- Maeda, H.; Tanaka, Y.; Fukutomi, M.; Asano, T. A New High-Tc Oxide Superconductor without a Rare Earth Element. Jpn. J. Appl. Phys. 1988, 27, L209. [Google Scholar] [CrossRef]
- Schilling, A.; Cantoni, M.; Guo, J.D.; Ott, H.R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System. Nature 1993, 363, 56–58. [Google Scholar] [CrossRef]
- Chen, X.H.; Wu, T.; Wu, G.; Liu, R.H.; Chen, H.; Fang, D.F. Superconductivity at 43 K in SmFeAsO1-xFx. Nature 2008, 453, 761–762. [Google Scholar] [CrossRef]
- Ren, Z.-A.; Lu, W.; Yang, J.; Yi, W.; Shen, X.-L.; Zheng, C.; Che, G.-C.; Dong, X.-L.; Sun, L.-L.; Fang, Z.; et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chin. Phys. Lett. 2008, 25, 2215–2216. [Google Scholar] [CrossRef]
- Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the Iron Arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 2008, 101, 107006. [Google Scholar] [CrossRef]
- Wang, X.C.; Liu, Q.Q.; Lv, Y.X.; Gao, W.B.; Yang, L.X.; Yu, R.C.; Li, F.Y.; Jin, C.Q. The Superconductivity at 18 K in LiFeAs System. Solid State Commun. 2008, 148, 538–540. [Google Scholar] [CrossRef]
- Yeh, K.-W.; Huang, T.-W.; Huang, Y.; Chen, T.-K.; Hsu, F.-C.; Wu, P.M.; Lee, Y.-C.; Chu, Y.-Y.; Chen, C.-L.; Luo, J.-Y.; et al. Tellurium Substitution Effect on Superconductivity of the α-Phase Iron Selenide. Europhys. Lett. 2008, 84, 37002. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Tomioka, F.; Tsuda, S.; Yamaguchi, T.; Takano, Y. Superconductivity in S-Substituted FeTe. Appl. Phys. Lett. 2009, 94, 012503. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Superconductivity in the Iron Selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 2010, 82, 180520. [Google Scholar] [CrossRef]
- Takano, Y.; Takeya, H.; Fujii, H.; Kumakura, H.; Hatano, T.; Togano, K.; Kito, H.; Ihara, H. Superconducting Properties of MgB2 Bulk Materials Prepared by High-Pressure Sintering. Appl. Phys. Lett. 2001, 78, 2914–2916. [Google Scholar] [CrossRef]
- Deguchi, K.; Takano, Y.; Mizuguchi, Y. Physics and Chemistry of Layered Chalcogenide Superconductors. Sci. Technol. Adv. Mater. 2012, 13, 054303. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, T. Ferroelectric Soft Phonons, Charge Density Wave Instability, and Strong Electron-Phonon Coupling in BiS2 Layered Superconductors: A First-Principles Study. Phys. Rev. B 2013, 87, 020506. [Google Scholar] [CrossRef]
- Wan, X.; Ding, H.-C.; Savrasov, S.Y.; Duan, C.-G. Electron-Phonon Superconductivity near Charge-Density-Wave Instability in LaO0.5F0.5BiS2: Density-Functional Calculations. Phys. Rev. B 2013, 87, 115124. [Google Scholar] [CrossRef]
- Al-Amer, R.; Khan, W.; Laref, A.; AlQahtani, H.R.; Murtaza, G.; Mahmood, Q.; Tchangnwa Nya, F.; Chowdhury, S.; Amine Monir, M.E.; Alghamdi, E.A.; et al. The Carriers Doping Effect on Electronic and Optical Behaviors of Newly Layered Sr1-xHfxFBiS2 Alloying Materials for Light-Modulator Devices. J. Phys. Chem. Solids 2023, 173, 111097. [Google Scholar] [CrossRef]
- Tamatsukuri, H.; Hasegawa, T.; Sagayama, H.; Mizumaki, M.; Murakami, Y.; Kajitani, J.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; Tsutsui, S. Investigation of the Phonon Dispersion Associated with Superlattice Reflections in the BiS2-Based Superconductor LaBiS2O0.5F0.5. Phys. Rev. B 2023, 107, 024303. [Google Scholar] [CrossRef]
- Aslam, M.; Gayen, S.; Singh, A.; Tanaka, M.; Yamaki, T.; Takano, Y.; Sheet, G. Anisotropic Superconductivity in La(O,F)BiSeS Crystals Revealed by Field-Angle Dependent Andreev Reflection Spectroscopy. Solid State Commun. 2017, 264, 26–30. [Google Scholar] [CrossRef]
- Liu, C.S.; Wu, W.C. Theory of Point-Contact Spectroscopy in Electron-Doped Cuprate Superconductors. Phys. Rev. B 2007, 76, 220504. [Google Scholar] [CrossRef]
- Liu, J.; Fang, D.; Wang, Z.; Xing, J.; Du, Z.; Li, S.; Zhu, X.; Yang, H.; Wen, H.-H. Giant Superconducting Fluctuation and Anomalous Semiconducting Normal State in NdO1−xFxBi1−yS2 Single Crystals. EPL 2014, 106, 67002. [Google Scholar] [CrossRef]
- Romano, P.; Ozyuzer, L.; Yusof, Z.; Kurter, C.; Zasadzinski, J.F. Modeling Study of the Dip-Hump Feature in Bi2Sr2CaCu2O8+δ Tunneling Spectroscopy. Phys. Rev. B 2006, 73, 092514. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Adroja, D.T.; Sogabe, R.; Goto, Y.; Mizuguchi, Y.; Hillier, A.D. Superconducting Gap Structure in Carrier Doped BiCh2-Based Layered Superconductors: A μ SR Study. J. Phys. Chem. Solids 2022, 170, 110898. [Google Scholar] [CrossRef]
- Terashima, K.; Wakita, T.; Sunagawa, M.; Fujiwara, H.; Nagayama, T.; Ono, K.; Kumigashira, H.; Nagao, M.; Watauchi, S.; Tanaka, I.; et al. Comparative ARPES Studies of LaOxF1−xBiS2 (x = 0.23 and 0.46). J. Phys. Conf. Ser. 2016, 683, 012002. [Google Scholar] [CrossRef]
- Ota, Y.; Okazaki, K.; Yamamoto, H.Q.; Yamamoto, T.; Watanabe, S.; Chen, C.; Nagao, M.; Watauchi, S.; Tanaka, I.; Takano, Y.; et al. Unconventional Superconductivity in the BiS2-Based Layered Superconductor NdO0.71F0.29BiS2. Phys. Rev. Lett. 2017, 118, 167002. [Google Scholar] [CrossRef]
- Wu, S.-L.; Yaji, K.; Ota, Y.; Harasawa, A.; Shin, S.; Imai, T.; Miyamoto, K.; Nagao, M.; Watauchi, S.; Tanaka, I.; et al. Systematic Study of Electronic States of Ln(O,F) BiS2 by Spin- and Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2022, 106, 104511. [Google Scholar] [CrossRef]
- Machida, T.; Fujisawa, Y.; Nagao, M.; Demura, S.; Deguchi, K.; Mizuguchi, Y.; Takano, Y.; Sakata, H. “Checkerboard Stripe” Electronic State on Cleaved Surface of NdO0.7F0.3BiS2 Probed by Scanning Tunneling Microscopy. J. Phys. Soc. Jpn. 2014, 83, 113701. [Google Scholar] [CrossRef]
- Ishida, N.; Demura, S.; Fujisawa, Y.; Ohta, S.; Miyata, K.; Sakata, H. Structural Modulation in LaO0.9F0.1BiSe2 Single Crystals Revealed by Scanning Tunneling Microscopy/Spectroscopy. J. Phys. Conf. Ser. 2018, 1054, 012001. [Google Scholar] [CrossRef]
- Nagao, M.; Tanaka, M.; Watauchi, S.; Tanaka, I.; Takano, Y. Superconducting Anisotropies of F-Substituted LaOBiSe2 Single Crystals. J. Phys. Soc. Jpn. 2014, 83, 114709. [Google Scholar] [CrossRef]
- Krzton-Maziopa, A.; Guguchia, Z.; Pomjakushina, E.; Pomjakushin, V.; Khasanov, R.; Luetkens, H.; Biswas, P.K.; Amato, A.; Keller, H.; Conder, K. Superconductivity in a New Layered Bismuth Oxyselenide: LaO0.5F0.5BiSe2. J. Phys. Condens. Matter 2014, 26, 215702. [Google Scholar] [CrossRef]
- Wu, S.F.; Richard, P.; Wang, X.B.; Lian, C.S.; Nie, S.M.; Wang, J.T.; Wang, N.L.; Ding, H. Raman Scattering Investigation of the Electron-Phonon Coupling in Superconducting Nd(O,F) BiS2. Phys. Rev. B 2014, 90, 054519. [Google Scholar] [CrossRef]
- Yamashita, T.; Tokiwa, Y.; Terazawa, D.; Nagao, M.; Watauchi, S.; Tanaka, I.; Terashima, T.; Matsuda, Y. Conventional S-Wave Superconductivity in BiS2-Based NdO0.71F0.29BiS2 Revealed by Thermal Transport Measurements. J. Phys. Soc. Jpn. 2016, 85, 073707. [Google Scholar] [CrossRef]
- Yamashita, A.; Jha, R.; Goto, Y.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Kawashima, C.; Ishida, K.; Takahashi, H.; Mizuguchi, Y. Evolution of Two Bulk-Superconducting Phases in Sr0.5RE0.5FBiS2 (RE: La, Ce, Pr, Nd, Sm) by External Hydrostatic Pressure Effect. Sci. Rep. 2020, 10, 12880. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Matsumoto, R.; Adachi, S.; Takano, Y. High-Pressure Effects on La(O,F)BiS2 Single Crystal Using Diamond Anvil Cell with Dual-Probe Diamond Electrodes. Appl. Phys. Express 2021, 14, 043001. [Google Scholar] [CrossRef]
- Lorenz, B.; Meng, R.L.; Chu, C.W. High-Pressure Study on MgB2. Phys. Rev. B 2001, 64, 012507. [Google Scholar] [CrossRef]
- Hoshi, K.; Kurihara, R.; Goto, Y.; Tokunaga, M.; Mizuguchi, Y. Extremely High Upper Critical Field in BiCh2-Based (Ch: S and Se) Layered Superconductor LaO0.5F0.5BiS2−xSex (x = 0.22 and 0.69). Sci. Rep. 2022, 12, 288. [Google Scholar] [CrossRef]
- Demura, S.; Deguchi, K.; Mizuguchi, Y.; Sato, K.; Honjyo, R.; Yamashita, A.; Yamaki, T.; Hara, H.; Watanabe, T.; Denholme, S.J.; et al. Coexistence of Bulk Superconductivity and Magnetism in CeO1−xFxBiS2. J. Phys. Soc. Jpn. 2015, 84, 024709. [Google Scholar] [CrossRef]
- Demura, S. Evolution of Superconductivity and Magnetism in BiS2-Based Layered Compounds. Nov. Supercond. Mater. 2016, 2, 1–15. [Google Scholar] [CrossRef]
- Miao, H.; Fumagalli, R.; Rossi, M.; Lorenzana, J.; Seibold, G.; Yakhou-Harris, F.; Kummer, K.; Brookes, N.B.; Gu, G.D.; Braicovich, L.; et al. Formation of Incommensurate Charge Density Waves in Cuprates. Phys. Rev. X 2019, 9, 031042. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D Transition Metal Dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Lee, J.; Nagao, M.; Mizuguchi, Y.; Ruff, J. Direct Observation of an Incommensurate Charge Density Wave in the BiS2-Based Superconductor NdO1−xFxBiS2. Phys. Rev. B 2021, 103, 245120. [Google Scholar] [CrossRef]
- Hoshi, K.; Arima, H.; Kataoka, N.; Ochi, M.; Yamashita, A.; De Visser, A.; Yokoya, T.; Kuroki, K.; Mizuguchi, Y. Controlling of Localization by Elemental-Substitution Effect in Layered BiCh2-Based Compounds LaO1−xFxBiS2−ySey. J. Phys. Soc. Jpn. 2023, 92, 054704. [Google Scholar] [CrossRef]
Material | TC (K) | Ref. | Material | TC (K) | Ref. |
---|---|---|---|---|---|
Bi4O4S3 | 6 | [41,42,50,51] | La(O,F)BiS2 | 11.5 | [43,52,53,54,55,56,57,58] |
Bi4O4(S,Se)3 | 4.5 | [59] | (La,Sm)(O,F)BiS2 | 10.5 | [60,61] |
Bi3O2S3 | 6 | [62,63] | La(O,F)Bi(S,Se)2 | 4 | [49,64,65,66] |
CeOBiS2 | 4 | [67,68] | La(O,F)BiSe2 | 6.5 | [69,70,71] |
LaOBiS2 | 3.5 | [43,72,73,74] | Pr(O,F)BiS2 | 7 | [75,76,77] |
Bi(O,F)BiS2 | 5 | [78,79,80] | Nd(O,F)BiS2 | 6.5 | [81,82,83,84,85] |
Ce(O,F)BiS2 | 8 | [86,87,88,89] | Yb(O,F)BiS2 | 5 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, P.; Pelella, A.; Di Bartolomeo, A.; Giubileo, F. The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy. Nanomaterials 2024, 14, 1740. https://doi.org/10.3390/nano14211740
Romano P, Pelella A, Di Bartolomeo A, Giubileo F. The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy. Nanomaterials. 2024; 14(21):1740. https://doi.org/10.3390/nano14211740
Chicago/Turabian StyleRomano, Paola, Aniello Pelella, Antonio Di Bartolomeo, and Filippo Giubileo. 2024. "The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy" Nanomaterials 14, no. 21: 1740. https://doi.org/10.3390/nano14211740
APA StyleRomano, P., Pelella, A., Di Bartolomeo, A., & Giubileo, F. (2024). The Superconducting Mechanism in BiS2-Based Superconductors: A Comprehensive Review with Focus on Point-Contact Spectroscopy. Nanomaterials, 14(21), 1740. https://doi.org/10.3390/nano14211740