Tuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Optimized Structures
3.2. Electronic Properties
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Geim, A.K. Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Liao, Q.; Fang, H.; Liu, Z.; Liu, W.; Ding, Z.; Luo, T.; Yang, N. A Revisit to High Thermoelectric Performance of Single-layer MoS2. Sci. Rep. 2015, 5, 18342. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef]
- Furlan, A.; Gueorguiev, G.K.; Högberg, H.; Stafström, S.; Hultman, L. Fullerene-like CPx: A first-principles study of the relative stability of precursors and defect energetics during synthetic growth. Thin Solid Films 2006, 515, 1028–1032. [Google Scholar] [CrossRef]
- Sfuncia, G.; Nicotra, G.; Giannazzo, F.; Pécz, B.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. 2D graphitic-like gallium nitride and other structural selectivity in confinement at the graphene/SiC interface. CrystEngComm 2023, 25, 5810–5817. [Google Scholar] [CrossRef]
- Bernardi, M.; Ataca, C.; Palummo, M.; Grossman, J.C. Optical and Electronic Properties of Two-Dimensional Layered Materials. Nanophotonics 2017, 6, 479–493. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.W. Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 2015, 91, 382–398. [Google Scholar] [CrossRef]
- Singh, A.K.; Hennig, R.G. Computational prediction of two-dimensional group-IV mono-chalcogenides Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 2014, 105, 042103. [Google Scholar] [CrossRef]
- Li, Z.Y.; Shaheer Akhtar, M.; Hee Kuk, J.; Kong, B.S.; Yang, O.B. Graphene application as a counter electrode material for dye-sensitized solar cell. Mater. Lett. 2012, 86, 96–99. [Google Scholar] [CrossRef]
- Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104. [Google Scholar] [CrossRef]
- Fang, H.; Chuang, S.; Chang, T.C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990. [Google Scholar] [CrossRef]
- Dichalcogenide, M.; Effect, F. Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition. Sci. Rep. 2014, 4, 4041. [Google Scholar] [CrossRef]
- Tritsaris, G.A.; Malone, B.D.; Kaxiras, E. Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study. J. Appl. Phys. 2013, 113, 233507. [Google Scholar] [CrossRef]
- Lu, X.; Jin, X.; Sun, J. Advances of graphene application in electrode materials for lithium ion batteries. Sci. China Technol. Sci. 2015, 58, 1829–1840. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Sun, H.; Mukherjee, S.; Singh, C.V. Mechanical properties of monolayer penta-graphene and phagraphene: A first-principles study. Phys. Chem. Chem. Phys. 2016, 18, 26736–26742. [Google Scholar] [CrossRef]
- Guo, S.-D.; Zhang, L. Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J. Mater. Chem. C Mater. 2016, 4, 9366–9374. [Google Scholar] [CrossRef]
- Liu, Z.; Morales-Ferreiro, J.O.; Luo, T. First-principles study of thermoelectric properties of blue phosphorene. Appl. Phys. Lett. 2018, 113, 063903. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-graphene: A new carbon allotrope. Proc. Natl. Acad. Sci. USA 2015, 112, 2372–2377. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press, Inc.: New York, NY, USA, 1989. [Google Scholar]
- Perdew, J.P.; Levy, M. Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 1983, 51, 1884–1887. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consisten Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1134–A1138. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Heyd, J.; Peralta, J.E.; Scuseria, G.E.; Martin, R.L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Brothers, E.N.; Izmaylov, A.F.; Normand, J.O.; Barone, V.; Scuseria, G.E. Accurate solid-state band gaps via screened hybrid electronic structure calculations. J. Chem. Phys. 2008, 129, 011102. [Google Scholar] [CrossRef]
- Quijano-Briones, J.J.; Fernández-Escamilla, H.N.; Tlahuice-Flores, A. Doped penta-graphene and hydrogenation of its related structures: A structural and electronic DFT-D study. Phys. Chem. Chem. Phys. 2016, 18, 15505–15509. [Google Scholar] [CrossRef] [PubMed]
- Stauber, T.; Beltrán, J.I.; Schliemann, J. Tight-binding approach to penta-graphene. Sci. Rep. 2016, 6, 22672. [Google Scholar] [CrossRef] [PubMed]
- Einollahzadeh, H.; Dariani, R.S.; Fazeli, S.M. Studying the electronic and phononic structure of new graphene allotrope: Penta-graphane. Sci. Technol. Adv. Mater. 2015, 17, 1–12. [Google Scholar]
- Einollahzadeh, H.; Dariani, R.S.; Fazeli, S.M. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations. Solid State Commun. 2016, 229, 1–10. [Google Scholar] [CrossRef]
- Wu, X.; Varshney, V.; Lee, J.; Zhang, T.; Wohlwend, J.L.; Roy, A.K.; Luo, T. Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett. 2016, 16, 3925–3935. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Wang, F.Q.; Guo, Y.; Liu, J.; Wang, Q. Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination. Phys. Chem. Chem. Phys. 2016, 18, 14191–14197. [Google Scholar] [CrossRef]
- Berdiyorov, G.R.; Dixit, G.; Madjet, M.E. Band gap engineering in penta-graphene by substitutional doping: First-principles calculations. J. Phys. Condens. Matter. 2016, 28, 475001. [Google Scholar] [CrossRef]
- Nigar, S.; Zhou, Z.; Wang, H.; Imtiaz, M. Modulating the electronic and magnetic properties of graphene. RSC Adv. 2017, 7, 51546–51580. [Google Scholar] [CrossRef]
- Şahin, H.; Ciraci, S. Chlorine adsorption on graphene: Chlorographene. J. Phys. Chem. C 2012, 116, 24075–24083. [Google Scholar] [CrossRef]
- Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Garrido, M.; Naranjo, A.; Pérez, E.M. Characterization of emerging 2D materials after chemical functionalization. Chem. Sci. 2024, 15, 3428–3445. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, G.; Li, B. Thermal conductivity of penta-graphene from molecular dynamics study. J. Chem. Phys. 2015, 143, 154703. [Google Scholar] [CrossRef]
Computational Details | |
---|---|
Software | VASP (Version: VASP.6.4.0) |
Exchange-correlation functional | GGA-PBE |
Pseudopotentials | Projector augmented wave (PAW)-PBE |
Smearing | Gaussian smearing |
C-valence configuration | 2s22p2, 4 electron valence number, 147.1560 eV |
H-valence configuration | 1s1, 1 electron valence number, 12.4884 eV |
F-valence configuration | 2s22p5, 7 electron valence number, 659.4942 eV |
Cl-valence configuration | 3s23p5, 12 electron valence number, 409.7259 eV |
Plane wave basis set cut-off energy | 500 eV |
Vacuum space in the z-direction | 15 Å |
-point mesh | 8 × 8 × 1 Monkhorst–Pack |
Electronic band calculation | 25 × 25 × 1 |
Compound | Literature Values | Our Optimized Values | ||
---|---|---|---|---|
Parameters (Å) | Parameters (Å) | |||
PG | a | 3.64 | a | 3.63 |
h-PG | a | 3.4897 | a | 3.50 |
f-PG | a | 3.4897 | a | 3.55 |
Cl-PG | a | 3.4897 | a | 3.88 |
Parameters | Our Optimized Parameters | |||
---|---|---|---|---|
PG | h-PG | f-PG | Cl-PG | |
d (C–C) (Å) | 1.549 | 1.098 | 1.357 | 1.581 |
d (C1–C2) (Å) | — | 1.551 | 1.561 | 1.668 |
d (C2–C2) (Å) | — | 1.55 | 1.559 | 1.663 |
— | 105.9° | 107.2° | 114.6° | |
— | 116.9° | 119.5° | 129.7° | |
(Å) | 1.21 | 1.62 | 1.61 | 1.55 |
Bandgap (HSE06) (eV) | 3.05 | 4.97 | 4.81 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Ferreiro, J.O.; Silva-Oelker, G.; Kumar, C.; Zambra, C.; Liu, Z.; Diaz-Droguett, D.E.; Celentano, D. Tuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation. Nanomaterials 2024, 14, 1751. https://doi.org/10.3390/nano14211751
Morales-Ferreiro JO, Silva-Oelker G, Kumar C, Zambra C, Liu Z, Diaz-Droguett DE, Celentano D. Tuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation. Nanomaterials. 2024; 14(21):1751. https://doi.org/10.3390/nano14211751
Chicago/Turabian StyleMorales-Ferreiro, J. O., Gerardo Silva-Oelker, Chandra Kumar, Carlos Zambra, Zeyu Liu, Donovan E. Diaz-Droguett, and Diego Celentano. 2024. "Tuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation" Nanomaterials 14, no. 21: 1751. https://doi.org/10.3390/nano14211751
APA StyleMorales-Ferreiro, J. O., Silva-Oelker, G., Kumar, C., Zambra, C., Liu, Z., Diaz-Droguett, D. E., & Celentano, D. (2024). Tuning the Electronic Bandgap of Penta-Graphene from Insulator to Metal Through Functionalization: A First-Principles Calculation. Nanomaterials, 14(21), 1751. https://doi.org/10.3390/nano14211751