Synthesis of Composition-Tunable Ag-Cu Bimetallic Nanoparticles Through Plasma-Driven Solution Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ag-Cu Bimetallic Nanoparticle Synthesis
2.2. Transmission Electron Microscopy (TEM)
3. Results and Discussion
3.1. Effects of Precursor Concentration Ratios
3.2. Effects of Plasma Electrode Distance
3.3. Mechanisms of Tuning NP Composition in PDSE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Idris, D.S.; Roy, A. Synthesis of Bimetallic Nanoparticles and Applications—An Updated Review. Crystals 2023, 13, 637. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Synthesis and Characterization of Various Bimetallic Nanoparticles and Their Application. Appl. Nano 2023, 4, 1–24. [Google Scholar] [CrossRef]
- Loza, K.; Heggen, M.; Epple, M. Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Adv. Funct. Mater. 2020, 30, 1909260. [Google Scholar] [CrossRef]
- Larrañaga-Tapia, M.; Betancourt-Tovar, B.; Videa, M.; Antunes-Ricardo, M.; Cholula-Díaz, J.L. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. Nanoscale Adv. 2023, 6, 51–71. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem. Rev. 2023, 123, 4855–4933. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Wang, C.; Wang, K.; Feng, Y.; Li, C.; Zhou, X.; Gan, L.; Feng, Y.; Zhou, H.; Zhang, B.; Qu, X.; et al. Co and Pt Dual-Single-Atoms with Oxygen-Coordinated Co-O-Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Adv. Mater. 2021, 33, 2003327. [Google Scholar] [CrossRef]
- Hao, B.; Gunaratna, M.J.; Zhang, M.; Weerasekara, S.; Seiwald, S.N.; Nguyen, V.T.; Meier, A.; Hua, D.H. Chiral-Substituted Poly-N-Vinylpyrrolidinones and Bimetallic Nanoclusters in Catalytic Asymmetric Oxidation Reactions. J. Am. Chem. Soc. 2016, 138, 16839–16848. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-Enhanced Gas Sensing in a Single Tailored Nanofocus. Nat. Mater. 2011, 10, 631–636. [Google Scholar] [CrossRef]
- Huan, K.; Li, Y.; Deng, D.; Wang, H.; Wang, D.; Li, M.; Luo, L. Composite-Controlled Electrospinning of CuSn Bimetallic Nanoparticles/Carbon Nanofibers for Electrochemical Glucose Sensor. Appl. Surf. Sci. 2022, 573, 151528. [Google Scholar] [CrossRef]
- Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic Nanoparticles for Antimicrobial Applications. Front. Chem. 2020, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Perdikaki, A.; Galeou, A.; Pilatos, G.; Karatasios, I.; Kanellopoulos, N.K.; Prombona, A.; Karanikolos, G.N. Ag and Cu Monometallic and Ag/Cu Bimetallic Nanoparticle-Graphene Composites with Enhanced Antibacterial Performance. ACS Appl. Mater. Interfaces 2016, 8, 27498–27510. [Google Scholar] [CrossRef] [PubMed]
- Paszkiewicz, M.; Golabiewska, A.; Rajski, L.; Kowal, E.; Sajdak, A.; Zaleska-Medynska, A. Synthesis and Characterization of Monometallic (Ag, Cu) and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications. J. Nanomater. 2016, 2016, 2187940. [Google Scholar] [CrossRef]
- Ma, J.; Liu, X.; Wang, R.; Zhang, J.; Jiang, P.; Wang, Y.; Tu, G. Bimetallic Core-Shell Nanostars with Tunable Surface Plasmon Resonance for Surface-Enhanced Raman Scattering. ACS Appl. Nano Mater. 2020, 3, 10885–10894. [Google Scholar] [CrossRef]
- Awiaz, G.; Lin, J.; Wu, A. Recent Advances of Au@Ag Core–Shell SERS-based Biosensors. Exploration 2023, 3, 20220072. [Google Scholar] [CrossRef]
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y. Bimetallic nanocrystals: Liquid-phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044–1060. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Xu, Q.; van der Pers, N.M.; Schmidt-Ott, A. Generation of Mixed Metallic Nanoparticles from Immiscible Metals by Spark Discharge. J. Nanopart. Res. 2010, 12, 247–259. [Google Scholar] [CrossRef]
- Kane, K.A.; Reber, A.C.; Khanna, S.N.; Bertino, M.F. Laser Synthesized Nanoparticle Alloys of Metals with Bulk Miscibility Gaps. Prog. Nat. Sci. Mater. Int. 2018, 28, 456–463. [Google Scholar] [CrossRef]
- Yang, C.; Ko, B.H.; Hwang, S.; Liu, Z.; Yao, Y.; Luc, W.; Cui, M.; Malkani, A.S.; Li, T.; Wang, X.; et al. Overcoming Immiscibility toward Bimetallic Catalyst Library. Sci. Adv. 2020, 6, eaaz6844. [Google Scholar] [CrossRef]
- Boruah, P.J.; Kalita, P.; Bailung, H. In-Liquid Plasma: A Novel Tool for Nanofabrication. In Plasma Science and Technology; IntechOpen: London, UK, 2022. [Google Scholar]
- Chen, Q.; Li, J.; Li, Y. A Review of Plasma–Liquid Interactions for Nanomaterial Synthesis. J. Phys. D Appl. Phys. 2015, 48, 424005. [Google Scholar] [CrossRef]
- Bratescu, M.A.; Cho, S.-P.; Takai, O.; Saito, N. Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma. J. Phys. Chem. C 2011, 115, 24569–24576. [Google Scholar] [CrossRef]
- Kondeti, V.S.S.K.; Gangal, U.; Yatom, S.; Bruggeman, P.J. Ag+ Reduction and Silver Nanoparticle Synthesis at the Plasma–Liquid Interface by an RF Driven Atmospheric Pressure Plasma Jet: Mechanisms and the Effect of Surfactant. J. Vac. Sci. Technol. A 2017, 35, 061302. [Google Scholar] [CrossRef]
- Mashimo, T.; Tamura, S.; Yamamoto, K.; Kelgenbaeva, Z.; Ma, W.; Tokuda, M.; Koinuma, M.; Isobe, H.; Yoshiasa, A. Synthesis of Pd-Ru Solid-Solution Nanoparticles by Pulsed Plasma in Liquid Method. RSC Adv. 2020, 10, 13232–13236. [Google Scholar] [CrossRef]
- Meiss, S.A.; Rohnke, M.; Kienle, L.; Zein El Abedin, S.; Endres, F.; Janek, J. Employing Plasmas as Gaseous Electrodes at the Free Surface of Ionic Liquids: Deposition of Nanocrystalline Silver Particles. ChemPhysChem 2007, 8, 50–53. [Google Scholar] [CrossRef]
- Tokushige, M.; Yamanaka, T.; Matsuura, A.; Nishikiori, T.; Ito, Y. Synthesis of Magnetic Nanoparticles (Fe and FePt) by Plasma-Induced Cathodic Discharge Electrolysis. IEEE Trans. Plasma Sci. 2009, 37, 1156–1160. [Google Scholar] [CrossRef]
- Raisanen, A.L.; Mueller, C.M.; Chaudhuri, S.; Schatz, G.C.; Kushner, M.J. A reaction mechanism for plasma electrolysis of AgNO3 forming silver nanoclusters and nanoparticles. J. Appl. Phys. 2022, 132, 203302. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Frontiera, R.R.; Kortshagen, U.R.; Kushner, M.J.; Linic, S.; Schatz, G.C.; Andaraarachchi, H.; Exarhos, S.; Jones, L.O.; Mueller, C.M.; et al. Plasma-driven solution electrolysis. J. Appl. Phys. 2021, 129, 200902. [Google Scholar] [CrossRef]
- Pang, Y.; Li, H.; Hua, Y.; Zhang, X.; Di, L. Rapid Synthesis of Noble Metal Colloids by Plasma–Liquid Interactions. Materials 2024, 17, 987. [Google Scholar] [CrossRef]
- Bulusu, R.K.M.; Yatom, S.; Patterson, C.W.; Wandell, R.J.; Locke, B.R. Effects of frequency and pulse width on electron density, hydrogen peroxide generation, and perfluorooctanoic acid mineralization in a nanosecond pulsed discharge gas-liquid plasma reactor. J. Vac. Sci. Technol. A 2022, 40, 063001. [Google Scholar] [CrossRef]
- Ghosh, S.; Hawtof, R.; Rumbach, P.; Go, D.B.; Akolkar, R.; Sankaran, R.M. Quantitative Study of Electrochemical Reduction of Ag+ to Ag Nanoparticles in Aqueous Solutions by a Plasma Cathode. J. Electrochem. Soc. 2017, 164, D818–D824. [Google Scholar] [CrossRef]
- Maguire, P.; Rutherford, D.; Macias-Montero, M.; Mahony, C.; Kelsey, C.; Tweedie, M.; Perez-Martin, F.; McQuaid, H.; Diver, D.; Mariotti, D. Continuous In-Flight Synthesis for On-Demand Delivery of Ligand-Free Colloidal Gold Nanoparticles. Nano Lett. 2017, 17, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Andaraarachchi, H.P.; Xiong, Z.; Eslamisaray, M.A.; Kushner, M.J.; Kortshagen, U.R. Size-Tunable Silver Nanoparticle Synthesis in Glycerol Driven by a Low-Pressure Nonthermal Plasma. J. Phys. D Appl. Phys. 2023, 56, 015201. [Google Scholar] [CrossRef]
- Xu, C.; Chaudhuri, S.; Held, J.; Andaraarachchi, H.P.; Schatz, G.C.; Kortshagen, U.R. Silver Nanoparticle Synthesis in Glycerol by Low-Pressure Plasma-Driven Electrolysis: The Roles of Free Electrons and Photons. J. Phys. Chem. Lett. 2023, 14, 9960–9968. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Lee, D.; Linic, S. Formation of Mixed Bimetallic Nanoparticles of Immiscible Metals through Plasma-Induced Reduction of Precursors in Solutions: A Case Study of Ag-Pt Alloy Nanoparticles. Chem. Mater. 2023, 35, 6557–6565. [Google Scholar] [CrossRef]
- Hsieh, J.; Hung, S. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu-Ag Alloy Thin Films. Materials 2016, 9, 914. [Google Scholar] [CrossRef]
- Lee, C.; Kim, N.R.; Koo, J.; Lee, Y.J.; Lee, H.M. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology 2015, 26, 455601. [Google Scholar] [CrossRef]
- Chen, Z.; Mochizuki, D.; Maitani, M.M.; Wada, Y. Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resistance. Nanotechnology 2013, 24, 265602. [Google Scholar] [CrossRef]
- Kim, N.R.; Shin, K.; Jung, I.; Shim, M.; Lee, H.M. Ag–Cu Bimetallic Nanoparticles with Enhanced Resistance to Oxidation: A Combined Experimental and Theoretical Study. J. Phys. Chem. C 2014, 118, 26324–26331. [Google Scholar] [CrossRef]
- Rout, L.; Kumar, A.; Dhaka, R.S.; Dash, P. Bimetallic Ag–Cu alloy nanoparticles as a highly active catalyst for the enamination of 1,3-dicarbonyl compounds. RSC Adv. 2016, 6, 49923–49940. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef] [PubMed]
- Osowiecki, W.T.; Ye, X.; Satish, P.; Bustillo, K.C.; Clark, E.L.; Alivisatos, A.P. Tailoring Morphology of Cu–Ag Nanocrescents and Core–Shell Nanocrystals Guided by a Thermodynamic Model. J. Am. Chem. Soc. 2018, 140, 8569–8577. [Google Scholar] [CrossRef] [PubMed]
- Rapallo, A.; Rossi, G.; Ferrando, R.; Fortunelli, A.; Curley, B.C.; Lloyd, L.D.; Tarbuck, G.M.; Johnston, R.L. Global Optimization of Bimetallic Cluster Structures. I. Size-Mismatched Ag–Cu, Ag–Ni, and Au–Cu Systems. J. Chem. Phys. 2005, 122, 194308. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lei, M.; Yang, S.; Zhou, L.; Liu, L.; Xiao, X.; Jiang, C.; Roy, V.A.L. A One-Pot Route to the Synthesis of Alloyed Cu/Ag Bimetallic Nanoparticles with Different Mass Ratios for Catalytic Reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 3450–3455. [Google Scholar] [CrossRef]
- Bell, F.; Ruan, Q.N.; Golan, A.; Horn, P.R.; Ahmed, M.; Leone, S.R.; Head-Gordon, M. Dissociative photoionization of glycerol and its dimer occurs predominantly via a ternary hydrogen-bridged ion-molecule complex. J. Am. Chem. Soc. 2013, 135, 14229–14239. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Xu, L.; Wang, X.; Chen, Q.; Ostrikov, K. The Ag+ Reduction Process in a Plasma Electrochemical System Tuned by the pH Value. J. Electrochem. Soc. 2021, 168, 123508. [Google Scholar] [CrossRef]
- Abid, J.P.; Wark, A.W.; Brevet, P.F.; Girault, H.H. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun. 2002, 7, 792–793. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Andaraarachchi, H.P.; Kortshagen, U.R. Synthesis of Composition-Tunable Ag-Cu Bimetallic Nanoparticles Through Plasma-Driven Solution Electrolysis. Nanomaterials 2024, 14, 1758. https://doi.org/10.3390/nano14211758
Xu C, Andaraarachchi HP, Kortshagen UR. Synthesis of Composition-Tunable Ag-Cu Bimetallic Nanoparticles Through Plasma-Driven Solution Electrolysis. Nanomaterials. 2024; 14(21):1758. https://doi.org/10.3390/nano14211758
Chicago/Turabian StyleXu, Chi, Himashi P. Andaraarachchi, and Uwe R. Kortshagen. 2024. "Synthesis of Composition-Tunable Ag-Cu Bimetallic Nanoparticles Through Plasma-Driven Solution Electrolysis" Nanomaterials 14, no. 21: 1758. https://doi.org/10.3390/nano14211758
APA StyleXu, C., Andaraarachchi, H. P., & Kortshagen, U. R. (2024). Synthesis of Composition-Tunable Ag-Cu Bimetallic Nanoparticles Through Plasma-Driven Solution Electrolysis. Nanomaterials, 14(21), 1758. https://doi.org/10.3390/nano14211758