Current Advances in Nanoelectronics, Nanosensors, and Devices
Abstract
:Data Availability Statement
Conflicts of Interest
References
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Xu, B.; Liang, J. Direct Application of Carbon Nanotubes (CNTs) Grown by Chemical Vapor Deposition (CVD) for Integrated Circuits (ICs) Interconnection: Challenges and Developments. Nanomaterials 2023, 13, 2791. [Google Scholar] [CrossRef]
- Capista, D.; Lozzi, L.; Di Bartolomeo, A.; Giubileo, F.; Martucciello, N.; Passacantando, M. SWCNT-Si Photodetector with Voltage-Dependent Active Surface. Nano Express 2024, 5, 015004. [Google Scholar] [CrossRef]
- Aminul Islam, M.; Hasan, M.; Rahman, M.; Hosne Mobarak, M.; Akter Mimona, M.; Hossain, N. Advances and Significances of Carbon Nanotube Applications: A Comprehensive Review. Eur. Polym. J. 2024, 220, 113443. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Giubileo, F.; Grillo, A.; Luongo, G.; Iemmo, L.; Urban, F.; Lozzi, L.; Capista, D.; Nardone, M.; Passacantando, M. Bias Tunable Photocurrent in Metal-Insulator-Semiconductor Heterostructures with Photoresponse Enhanced by Carbon Nanotubes. Nanomaterials 2019, 9, 1598. [Google Scholar] [CrossRef]
- Capista, D.; Lozzi, L.; Pelella, A.; Di Bartolomeo, A.; Giubileo, F.; Passacantando, M. Spatially Resolved Photo-Response of a Carbon Nanotube/Si Photodetector. Nanomaterials 2023, 13, 650. [Google Scholar] [CrossRef]
- Hughes, K.J.; Iyer, K.A.; Bird, R.E.; Ivanov, J.; Banerjee, S.; Georges, G.; Zhou, Q.A. Review of Carbon Nanotube Research and Development: Materials and Emerging Applications. ACS Appl. Nano Mater. 2024, 7, 18695–18713. [Google Scholar] [CrossRef]
- Giubileo, F.; Iemmo, L.; Luongo, G.; Martucciello, N.; Raimondo, M.; Guadagno, L.; Passacantando, M.; Lafdi, K.; Di Bartolomeo, A. Transport and Field Emission Properties of Buckypapers Obtained from Aligned Carbon Nanotubes. J. Mater. Sci. 2017, 52, 6459–6468. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Martucciello, N.; Romeo, F.; Iemmo, L.; Romano, P.; Passacantando, M. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation. Nanomaterials 2016, 6, 206. [Google Scholar] [CrossRef]
- Al Faruque, M.A.; Syduzzaman, M.; Sarkar, J.; Bilisik, K.; Naebe, M. A Review on the Production Methods and Applications of Graphene-Based Materials. Nanomaterials 2021, 11, 2414. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Giubileo, F.; Genovese, L.; Iemmo, L.; Martucciello, N.; Di Bartolomeo, A. I-V and C-V Characterization of a High-Responsivity Graphene/Silicon Photodiode with Embedded MOS Capacitor. Nanomaterials 2017, 7, 158. [Google Scholar] [CrossRef] [PubMed]
- Giubileo, F.; Martucciello, N.; Di Bartolomeo, A. Focus on Graphene and Related Materials. Nanotechnology 2017, 28, 410201. [Google Scholar] [CrossRef] [PubMed]
- Radsar, T.; Khalesi, H.; Ghods, V. Graphene Properties and Applications in Nanoelectronic. Opt. Quantum Electron. 2021, 53, 178. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A. The Role of Contact Resistance in Graphene Field-Effect Devices. Prog. Surf. Sci. 2017, 92, 143–175. [Google Scholar] [CrossRef]
- Yu, J.; Wu, S.; Zhao, X.; Li, Z.; Yang, X.; Shen, Q.; Lu, M.; Xie, X.; Zhan, D.; Yan, J. Progress on Two-Dimensional Transitional Metal Dichalcogenides Alloy Materials: Growth, Characterisation, and Optoelectronic Applications. Nanomaterials 2023, 13, 2843. [Google Scholar] [CrossRef]
- Giubileo, F.; Grillo, A.; Passacantando, M.; Urban, F.; Iemmo, L.; Luongo, G.; Pelella, A.; Loveridge, M.; Lozzi, L.; Di Bartolomeo, A. Field Emission Characterization of MoS2 Nanoflowers. Nanomaterials 2019, 9, 717. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, Y.; Huang, H. Evolution Application of Two-Dimensional MoS2-Based Field-Effect Transistors. Nanomaterials 2022, 12, 3233. [Google Scholar] [CrossRef] [PubMed]
- Iemmo, L.; Urban, F.; Giubileo, F.; Passacantando, M.; Di Bartolomeo, A. Nanotip Contacts for Electric Transport and Field Emission Characterization of Ultrathin MoS2 Flakes. Nanomaterials 2020, 10, 106. [Google Scholar] [CrossRef]
- Thoutam, L.R.; Mathew, R.; Ajayan, J.; Tayal, S.; Nair, S.V. A Critical Review of Fabrication Challenges and Reliability Issues in Top/Bottom Gated MoS2 Field-Effect Transistors. Nanotechnology 2023, 34, 232001. [Google Scholar] [CrossRef]
- Kumar, A.; Viscardi, L.; Faella, E.; Giubileo, F.; Intonti, K.; Pelella, A.; Sleziona, S.; Kharsah, O.; Schleberger, M.; Di Bartolomeo, A. Black Phosphorus Unipolar Transistor, Memory, and Photodetector. J. Mater. Sci. 2023, 58, 2689–2699. [Google Scholar] [CrossRef]
- Yu, H.; Shang, Y.; Hu, Y.; Pei, L.; Zhang, G. Transport Property of Wrinkled Graphene Nanoribbon Tuned by Spin-Polarized Gate Made of Vanadium-Benzene Nanowire. Nanomaterials 2023, 13, 2270. [Google Scholar] [CrossRef] [PubMed]
- Chereches, E.I.; Minea, A.A. Experiments on the Electrical Conductivity of PEG 400 Nanocolloids Enhanced with Two Oxide Nanoparticles. Nanomaterials 2023, 13, 1555. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, J.; Kang, B.; Lee, S.; Lee, J.; Lim, J.; Hwang, H.; Ahn, S.; Baek, R. A Novel Source/Drain Extension Scheme with Laser-Spike Annealing for Nanosheet Field-Effect Transistors in 3D ICs. Nanomaterials 2023, 13, 868. [Google Scholar] [CrossRef]
- Cai, Y.; Tong, Y.; Liu, Y.; Li, X.; Chen, B.; Liu, F.; Zhou, B.; Liu, Y.; Qin, Z.; Wu, Z.; et al. Study on Thermal Effect of Aluminum-Air Battery. Nanomaterials 2023, 13, 646. [Google Scholar] [CrossRef]
- Mutepfe, C.D.K.; Srivastava, V.M. Design and Implementation of Graphene-Based Tunable Microwave Filter for THz Applications. Nanomaterials 2022, 12, 4443. [Google Scholar] [CrossRef]
- Emelin, E.V.; Cho, H.D.; Korepanov, V.I.; Varlamova, L.A.; Erohin, S.V.; Kim, D.Y.; Sorokin, P.B.; Panin, G.N. Formation of Diamane Nanostructures in Bilayer Graphene on Langasite under Irradiation with a Focused Electron Beam. Nanomaterials 2022, 12, 4408. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, A.; Darraj, A.; Khan, M.E.; Azmi, L.; Alalwan, A.; Alamri, O.; Tabish, M.; Khan, A.U. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. Nanomaterials 2023, 13, 867. [Google Scholar] [CrossRef]
- Sagadevan, S.; Rahman, M.Z.; Léonard, E.; Losic, D.; Hessel, V. Sensor to Electronics Applications of Graphene Oxide through AZO Grafting. Nanomaterials 2023, 13, 846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giubileo, F. Current Advances in Nanoelectronics, Nanosensors, and Devices. Nanomaterials 2024, 14, 1771. https://doi.org/10.3390/nano14211771
Giubileo F. Current Advances in Nanoelectronics, Nanosensors, and Devices. Nanomaterials. 2024; 14(21):1771. https://doi.org/10.3390/nano14211771
Chicago/Turabian StyleGiubileo, Filippo. 2024. "Current Advances in Nanoelectronics, Nanosensors, and Devices" Nanomaterials 14, no. 21: 1771. https://doi.org/10.3390/nano14211771
APA StyleGiubileo, F. (2024). Current Advances in Nanoelectronics, Nanosensors, and Devices. Nanomaterials, 14(21), 1771. https://doi.org/10.3390/nano14211771