Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges
Abstract
:1. Introduction
2. The Progress on Solid-State Electrolytes
2.1. Solid Polymer Electrolytes
Polymer Matrix | Li Salt | Temp. (°C) | Ionic Conductivity (S cm−1) | tLi+ | Capacity mA h g−1 (Current Density, Cycle Index) (Test Temperature) | Refs. |
---|---|---|---|---|---|---|
CA/PEGMEA/SN | LiTFSI | 25 | 1.9 × 10−3 | 0.56 | 171 (0.05C, 150) (25 °C) | [52] |
TEGDME/PEO/TMPTA | LiTFSI | 30 | 4.36 × 10−4 | 0.76 | 141.2 (0.5C 240) (30 °C) | [53] |
PPEGMA | Li(PVAOB) | 100 | 3 × 10−4 | / | / | [49] |
PEO | LiFSI | 30 | 2.8 × 10−4 | / | 145.5 (0.5C, 750) (30 °C) | [55] |
PTHF | LiClO4 | 60 | 2.3 × 10−4 | 0.36 | 142 (0.1C, 100) (60 °C) | [56] |
PEC/PTMC | LiFSI | 50 | ~10−5 | 0.6 | 150 (0.1C, 10) (50 °C) | [57] |
PCL/PVDF | LiTFSI | 60 | ~1.38 × 10−4 | 0.89 | ~112 (3C cm−2, 500) (60 °C) | [58] |
PS-b-POEG9MA | LiClO4 | 25 | 10−5 | / | ~60 (8 mA g−1, 1) (20 °C) | [59] |
PVDF-HFP | LiTFSI | 70 | 7.24 × 10−4 | 0.57 | 150.6 (0.5C, 500) (70 °C) | [60] |
PEO/PEG | LiTFSI | 55 | ~10−4 | / | 127.7 (0.2C, 50) (55 °C) | [61] |
PC | LiBNMB | 22 | 2.5 × 10−6 | / | -- | [62] |
PEO | P(SSPSILi-alt-MA) | 25 | 3.08 × 10−4 | 0.97 | ~118 (0.1C, 350) (80 °C) | [63] |
PEGMA/PEGDA | LiClO4 | 30 | 6.77 × 10−5 | / | 132 (0.1C, 40) (60 °C) | [64] |
PEO/PEGDMA750 | LiClO4 | 20 | 2.82 × 10−5 | 0.3 | 130.5 (0.1C, 150) (60 °C) | [65] |
ePPO | LiTFSI | 25 | 2.5 × 10−4 | / | 144 (0.2C, 300) (25 °C) | [66] |
PI/PEO | LiTFSI | 30 | 2.3 × 10−4 | / | ~125 (0.5C, 200) (60 °C) | [11] |
PEO | LiDFOB | 45 | 1 × 10−5 | / | / | [67] |
VDIM-TFSI/PVdF-HFP | LiTFSI | 25 | 7 × 10−4 | / | 125.9 (0.1C, 100) (25 °C) | [68] |
PEO-b-PA | LITFSI | 25 | 3.7 × 10−4 | 0.57 | 136.8 (0.2C, 100) (25 °C) | [69] |
2.2. Inorganic Solid Electrolytes
2.2.1. Solid Oxide Electrolytes
2.2.2. Sulfide Solid Electrolytes
2.2.3. Halide Solid Electrolytes (HSEs)
2.3. Organic–Inorganic Composite Solid Electrolytes (Organic–Inorganic CSEs)
3. Challenges Concerning Solid-State Batteries
3.1. High Interfacial Resistance
3.2. Interfaces Between the SSEs and the Anode
3.3. Interfaces Between the SSEs and the Cathode
4. Industrialization Status of Solid-State Electrolytes
5. Conclusions and Future Perspectives
- (1)
- Material and structural innovations related to solid electrolytes: There is still a significant gap in the ionic conductivity between solid electrolytes and traditional liquid electrolytes. It is important to optimize the ionic conductivity of solid electrolytes. New solid electrolyte materials, such as ceramics, polymers, and gels, etc., are being developed through material innovation, structural design, and computer-aided functions to improve the conductivity and stability of materials at the interface. The battery’s mechanical and electrochemical properties will be enhanced by innovative solid electrolyte structures, such as gradient structures, composite structures, and sandwich structures. For example, at the microscopic scale, the crystal structure of fast ionic conductors can be enhanced by improvements to the preparation process or material composition. At the macro level, the density of the electrolyte layer can be improved by incorporating additional additives or enhancing the processing parameters of the material to attain a higher level of ionic conductivity;
- (2)
- Optimization of the interface stability of solid-state battery electrodes and reducing interface impedance: The battery’s electrochemical stability and cycle duration can be promoted by enhancing the contact area between the electrode and solid electrolytes through surface coating treatment and element doping. Moreover, the oxidation stability of SSEs and controlling the growth of lithium dendrites can be improved by optimizing the preparation process and the material composition of solid electrolytes and the construction of an artificial in situ SEI layer. The contact properties of materials can be effectively improved by designing matching single-crystal or polycrystal materials and solid-state battery processes. Likewise, new preparation procedures are being developed, such as 3D printing, solution casting, vapor deposition, in situ polymerization, dry mixing, and other procedures to decrease the interface resistance of solid electrolytes. In the future, the development of new binders, fillers, and other additives will also make a significant contribution to solving the problems related to poor interface contact and high interface resistance;
- (3)
- The design of inorganic/polymer composite solid electrolytes with new structures: The electrolytes of inorganic/polymer composites have good mechanical workability, ion conductivity, and electrochemical stability, being one of the best choices for incorporation within the all-solid-state battery system in the future, to realize the complementary advantages of polymer electrolytes and inorganic electrolytes, and to establish a rapid ion transport channel between the interfaces in each phase of the composite electrolyte;
- (4)
- Evaluation techniques for testing solid-state batteries and solid electrolytes and the characterization of advanced technology: Establish a complete solid-state battery test and a solid-state electrolyte test evaluation system, including electrochemical performance tests and safety performance tests, etc., to accelerate the commercialization of solid-state electrolytes and solid-state battery industrialization processes. The utilization of in situ Raman technology, in situ Fourier infrared technology, hashes, and other technologies can be used to assist the fundamental theoretical research into solid electrolytes, including the transmission mechanism of the solid electrolyte interface, to guide the development of novel materials and novel structures, and expedite the development of solid lithium batteries.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, J.; Zhao, P.; Wang, N.N.; Huang, F.Q.; Dou, S.X. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 2022, 15, 2753–2775. [Google Scholar] [CrossRef]
- Wu, F.; Liu, L.; Wang, S.; Xu, J.; Lu, P.; Yan, W.; Peng, J.; Wu, D.; Li, H. Solid state ionics—Selected topics and new directions. Prog. Mater. Sci. 2022, 126, 100921. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Li, H.; Chen, L.; Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 2021, 3, 827–853. [Google Scholar] [CrossRef]
- Chen, R.; Nolan, A.M.; Lu, J.; Wang, J.; Yu, X.; Mo, Y.; Chen, L.; Huang, X.; Li, H. The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium. Joule 2020, 4, 812–821. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef]
- Xu, X.; Evdokimov, P.V.; Volkov, V.S.; Xiong, S.; Jiao, X.; Kapitanova, O.O.; Liu, Y. Internal failure coupled with interfacial disintegration of solid-state electrolyte induced by the electrodeposition of lithium metal under defected interface. Energy Storage Mater. 2023, 57, 421–428. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Sadd, M.; Kapitanova, O.O.; Krivchenko, V.A.; Ban, J.; Wang, J.; Jiao, X.; Song, Z.; Song, J.; et al. Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Adv. Sci. 2021, 8, 2003301. [Google Scholar] [CrossRef]
- Pazhaniswamy, S.; Joshi, S.A.; Hou, H.; Parameswaran, A.K.; Agarwal, S. Hybrid Polymer Electrolyte Encased Cathode Particles Interface-Based Core–Shell Structure for High-Performance Room Temperature All-Solid-State Batteries. Adv. Energy Mater. 2023, 13, 2202981. [Google Scholar] [CrossRef]
- Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A 2019, 7, 13113–13119. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Yan, C.; Zhang, Q. Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Adv. Mater. 2021, 33, 2004128. [Google Scholar] [CrossRef]
- Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Ai, S.; Mazumdar, S.; Li, H.; Cao, Y.; Li, T. Nano-silica doped composite polymer chitosan/poly(ethylene oxide)-based electrolyte with high electrochemical stability suitable for quasi solid-state lithium metal batteries. J. Electroanal. Chem. 2021, 895, 115464. [Google Scholar] [CrossRef]
- Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993, 86, 689–693. [Google Scholar] [CrossRef]
- Albertus, P.; Babinec, S.J.; Litzelman, S.J.; Newman, A.E. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2022, 3, 16–21. [Google Scholar] [CrossRef]
- Han, F.; Westover, A.S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D.N.; Dudney, N.J.; Wang, H.; Wang, C. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196. [Google Scholar] [CrossRef]
- Yan, J.; Zhu, D.; Ye, H.; Sun, H.; Zhang, X.; Yao, J.; Chen, J.; Geng, L.; Su, Y.; Zhang, P.; et al. Atomic-Scale Cryo-TEM Studies of the Thermal Runaway Mechanism of Li1.3Al0.3Ti1.7P3O12 Solid Electrolyte. ACS Energy Lett. 2022, 7, 3855–3863. [Google Scholar] [CrossRef]
- Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Armand, M. Polymer solid electrolytes—An overview. Solid State Ion. 1983, 9–10, 745–754. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, H.; Mao, R.; Jiang, W.; Wang, L.; Song, Z.; Pei, M.; Zhang, T.; Hu, F. Designing Zwitterionic Gel Polymer Electrolytes with Dual-Ion Solvation Regulation Enabling Stable Sodium Ion Capacitor. Adv. Energy Mater. 2023, 13, 2300068. [Google Scholar] [CrossRef]
- Wang, N.; Qin, D.; Sun, Q.; Chen, X.; Song, Y.; Xin, T. Single-Ion Conducting Polyurethane-Ester Solid Polymer Electrolyte Membrane toward Lithium Metal Batteries. ACS Appl. Polym. Mater. 2023, 5, 2607–2616. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, G.; Zhao, Z.; Cao, M.; Zhou, H.; Zhang, S.; Qian, H.; Lin, Z.; Lu, D.; Wu, J.; et al. Polymeric Sulfur as a Li Ion Conductor. Nano Lett. 2020, 20, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xu, Y.; Zhou, Y.; Wang, P.; Feng, H.; Yang, J.; Zhuge, F.; Tan, Q. Cellulose-Assisted Vertically Heterostructured PEO-Based Solid Electrolytes Mitigating Li-Succinonitrile Corrosion for Lithium Metal Batteries. ACS Appl. Mater. Interface 2023, 15, 20897–20908. [Google Scholar] [CrossRef]
- Guo, M.; Xiong, J.; Jin, X.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Mussel stimulated modification of flexible Janus PAN/PVDF-HFP nanofiber hybrid membrane for advanced lithium-ion batteries separator. J. Membr. Sci. 2023, 675, 121533. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, M.; Shi, L.; Zheng, J.; Wang, Z.; Hu, B.; Sun, C. Ultrahigh salt content enables the nonflammable PVDF-based solid electrolyte with high ionic conductivity. Solid State Ion. 2023, 397, 116242. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Shi, J.; Li, Y.; You, J.; Bian, F. Crystallization-templated high-performance PVDF separator used in lithium-ion batteries. J. Membr. Sci. 2023, 670, 121359. [Google Scholar] [CrossRef]
- Li, R.; Feng, Y.; Akcora, P. Examining ionicity and conductivity in poly(methyl methacrylate) containing imidazolium-based ionic liquids. J. Mol. Liq. 2023, 382, 121897. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Xu, J.; Jing, M.; Yao, S.; Shen, X.; Li, S.; Tu, F. Boosting the performance of poly(ethylene oxide)-based solid polymer electrolytes by blending with poly(vinylidene fluoride-co-hexafluoropropylene) for solid-state lithium-ion batteries. Int. J. Energy Res. 2020, 44, 7831–7840. [Google Scholar] [CrossRef]
- Liu, H.; Xu, L.; Tu, H.; Luo, Z.; Zhu, F.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All-Solid-State Li Battery. Small 2023, 19, 2301275. [Google Scholar] [CrossRef]
- Bao, W.; Zhang, Y.; Cao, L.; Jiang, Y.; Zhang, H.; Zhang, N.; Liu, Y.; Yan, P.; Wang, X.; Liu, Y.; et al. An H2O-Initiated Crosslinking Strategy for Ultrafine-Nanoclusters-Reinforced High-Toughness Polymer-In-Plasticizer Solid Electrolyte. Adv. Mater. 2023, 35, 2304712. [Google Scholar] [CrossRef]
- Ai, S.; Wang, T.; Li, T.; Wan, Y.; Xu, X.; Lu, H.; Qu, T.; Luo, S.; Jiang, J.; Yu, X.; et al. A Chitosan/Poly(ethylene oxide)-Based Hybrid Polymer Composite Electrolyte Suitable for Solid-State Lithium Metal Batteries. ChemistrySelect 2020, 5, 2878–2885. [Google Scholar] [CrossRef]
- Ding, P.; Lin, Z.; Guo, X.; Wu, L.; Wang, Y.; Guo, H.; Li, L.; Yu, H. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today 2021, 51, 449–474. [Google Scholar] [CrossRef]
- Fei, Y.; Liu, S.; Long, Y.; Lu, L.; He, Y.; Ma, X.; Deng, Y. New single lithium ion conducting polymer electrolyte derived from delocalized tetrazolate bonding to polyurethane. Electrochim. Acta 2019, 299, 902–913. [Google Scholar] [CrossRef]
- Fraile-Insagurbe, D.; Boaretto, N.; Aldalur, I.; Raposo, I.; Bonilla, F.J.; Armand, M.; Martínez-Ibañez, M. Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Res. 2023, 16, 8457–8468. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, K.; Ding, F.; Liu, X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174. [Google Scholar] [CrossRef]
- Vincent, C.A. Ion transport in polymer electrolytes. Electrochim. Acta 1995, 40, 2035–2040. [Google Scholar] [CrossRef]
- Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Chen, X.; Huang, Y.; Zhen, X.; Wei, L.; Zhong, X.; Pan, W. Facile Synthesis of Two-Dimensional Natural Vermiculite Films for High-Performance Solid-State Electrolytes. Materials 2023, 16, 729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Meng, X.; Hou, W.; Hu, W.; Mo, J.; Yang, T.; Zhang, W.; Fan, Q.; Liu, L.; Jiang, B.; et al. Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. Nano Res. Energy 2023, 2, e9120050. [Google Scholar] [CrossRef]
- Patla, S.K.; Pal, P.; Ghosh, A. Ionic transport and segmental dynamics in poly(ethylene oxide) based polymer electrolytes: Dependence on molecular weight of host polymer matrix. Solid State Ion. 2023, 398, 116261. [Google Scholar] [CrossRef]
- Narute, S.; Angel, J.M.; Kyu, T. Highly conductive, stretchable block copolymer based elastomeric networks for lithium ion batteries. Electrochim. Acta 2023, 443, 141962. [Google Scholar] [CrossRef]
- Han, C.; Chen, G.; Ma, Y.; Ma, J.; Shui, X.; Dong, S.; Xu, G.; Zhou, X.; Cui, Z.; Qiao, L.; et al. Strategies towards inhibition of aluminum current collector corrosion in lithium batteries. Energy Mater. 2023, 3, 300052. [Google Scholar] [CrossRef]
- Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516. [Google Scholar] [CrossRef]
- Wang, P.; Chai, J.; Zhang, Z.; Zhang, H.; Ma, Y.; Xu, G.; Du, H.; Liu, T.; Li, G.; Cui, G. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J. Mater. Chem. A 2019, 7, 5295–5304. [Google Scholar] [CrossRef]
- Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 2018, 8, 1702657. [Google Scholar] [CrossRef]
- Wang, H.; Song, J.; Zhang, K.; Fang, Q.; Zuo, Y.; Yang, T.; Yang, Y.; Gao, C.; Wang, X.; Pang, Q.; et al. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery. Energy Environ. Sci. 2022, 15, 5149–5158. [Google Scholar] [CrossRef]
- Dhatarwal, P.; Choudhary, S.; Sengwa, R.J. Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO-PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Compos. Commun. 2018, 10, 11–17. [Google Scholar] [CrossRef]
- Liu, W.; Yi, C.; Li, L.; Liu, S.; Gui, Q.; Ba, D.; Li, Y.; Peng, D.; Liu, J. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries. Angew. Chem. Int. Ed. 2021, 60, 12931–12940. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Deng, Y.; Zhou, M.; Tang, W.; Dong, H.; Zhao, W.; Liu, R. In situ cross-linked plastic crystal electrolytes toward superior lithium metal batteries. Mater. Today Energy 2023, 31, 101198. [Google Scholar] [CrossRef]
- Soydan, A.M.; Bozkurt, A. Single-ion conductivity enhancement for the composite polymer electrolytes based on Li(PVAOB)/PPEGMA for lithium-ion batteries. Ionics 2018, 24, 1399–1405. [Google Scholar] [CrossRef]
- Wang, X.; Fang, Y.; Yan, X.; Liu, S.; Zhao, X.; Zhang, L. Highly conductive polymer electrolytes based on PAN-PEI nanofiber membranes with in situ gelated liquid electrolytes for lithium-ion batteries. Polymer 2021, 230, 124038. [Google Scholar] [CrossRef]
- Baskoro, F.; Wong, H.Q.; Yen, H.-J. Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, C.; Xin, M.; Chen, S.; Xu, P.; Li, D.; Liu, J.; Wang, Y.; Xie, H.; Sun, X.; et al. Ultra-thin and high-voltage-stable Bi-phasic solid polymer electrolytes for high-energy-density Li metal batteries. Nano Energy 2024, 119, 109054. [Google Scholar] [CrossRef]
- Fu, F.; Lu, W.; Zheng, Y.; Chen, K.; Sun, C.; Cong, L.; Liu, Y.; Xie, H.; Sun, L. Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. J. Power Sources 2021, 484, 229186. [Google Scholar] [CrossRef]
- Cui, G.; Tominaga, Y. Polymer Electrolytes toward Next-Generation Batteries. Macromol. Chem. Phys. 2022, 223, 2200013. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.-M.; Li, F. Homogeneous and Fast Ion Conduction of PEO-Based Solid-State Electrolyte at Low Temperature. Adv. Funct. Mater. 2020, 30, 2007172. [Google Scholar] [CrossRef]
- Huang, S.; Cui, Z.; Qiao, L.; Xu, G.; Zhang, J.; Tang, K.; Liu, X.; Wang, Q.; Zhou, X.; Zhang, B.; et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochim. Acta 2019, 299, 820–827. [Google Scholar] [CrossRef]
- Li, Z.; Mindemark, J.; Brandell, D.; Tominaga, Y. A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery. Polym. J. 2019, 51, 753–760. [Google Scholar] [CrossRef]
- Pei, D.; Li, Y.; Huang, S.; Liu, M.; Hong, J.; Hou, S.; Jin, H.; Cao, G. Polycaprolactone-poly(vinylidene fluoride) blended composite polymer electrolyte with enhanced high power performance and interfacial stability for all-solid-state Li metal batteries. Chem. Eng. J. 2023, 461, 141899. [Google Scholar] [CrossRef]
- Rolland, J.; Brassinne, J.; Bourgeois, J.P.; Poggi, E.; Vlad, A.; Gohy, J.F. Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries. J. Mater. Chem. A 2014, 2, 11839–11846. [Google Scholar] [CrossRef]
- Jie, J.; Liu, Y.; Cong, L.; Zhang, B.; Lu, W.; Zhang, X.; Liu, J.; Xie, H.; Sun, L. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J. Energy Chem. 2020, 49, 80–88. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J.B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184. [Google Scholar] [CrossRef]
- Weber, R.L.; Mahanthappa, M.K. Thiol-ene synthesis and characterization of lithium bis(malonato)borate single-ion conducting gel polymer electrolytes. Soft. Matter. 2017, 13, 7633–7643. [Google Scholar] [CrossRef]
- Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater. 2019, 19, 401–407. [Google Scholar] [CrossRef]
- Hu, J.; Wang, W.; Zhou, B.; Feng, Y.; Xie, X.; Xue, Z. Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. J. Membr. Sci. 2019, 575, 200–208. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhou, B.; Wang, J.; Zuo, C.; He, D.; Xie, X.; Xue, Z. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J. Membr. Sci. 2019, 576, 182–189. [Google Scholar] [CrossRef]
- Lopez, J.; Sun, Y.; Mackanic, D.G.; Lee, M.; Foudeh, A.M.; Song, M.S.; Cui, Y.; Bao, Z. A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors. Adv. Mater. 2018, 30, e1804142. [Google Scholar] [CrossRef]
- Deiner, L.J.; Jenkins, T.; Howell, T.; Rottmayer, M. Aerosol Jet Printed Polymer Composite Electrolytes for Solid-State Li-Ion Batteries. Adv. Eng. Mater. 2019, 21, 1900952. [Google Scholar] [CrossRef]
- Huang, T.; Long, M.-C.; Wang, X.-L.; Wu, G.; Wang, Y.-Z. One-step preparation of poly(ionic liquid)-based flexible electrolytes by in-situ polymerization for dendrite-free lithium ion batteries. Chem. Eng. J. 2019, 375, 122062. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Wang, T.; Zhong, L.; Han, D.; Xiao, M.; Wang, S.; Meng, Y. Polyether-b-Amide Based Solid Electrolytes with Well-Adhered Interface and Fast Kinetics for Ultralow Temperature Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2023, 33, 2300683. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G.-y. Ionic conductivity and sinterability of lithium titanium phosphate system. Solid State Ion. 1990, 40–41, 38–42. [Google Scholar] [CrossRef]
- Inoue, M.; Iwane, H.; Kikuyama, H.; Tasaki, Y.; Honda, Y.; Abe, T. Preparation of highly ionic conductive lithium phosphorus oxynitride electrolyte particles using the polygonal barrel-plasma treatment method. J. Alloys. Compd. 2022, 923, 166350. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv. Mater. 2021, 33, 2000751. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gao, L.; Zhang, Z.; Zhang, L.; Deng, N.; Zhao, Y.; Kang, W. Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes. Energy Storage Mater. 2024, 64, 103072. [Google Scholar] [CrossRef]
- Kim, S.; Kisu, K.; Takagi, S.; Oguchi, H.; Shin-ichi, O. Complex Hydride Solid Electrolytes of the Li(CB9H10)-Li(CB11H12) Quasi-Binary System: Relationship between the Solid Solution and Phase Transition, and the Electrochemical Properties. ACS Appl. Energy Mater. 2020, 3, 4831–4839. [Google Scholar] [CrossRef]
- Kim, K.; Park, D.; Jung, H.-G.; Chung, K.Y.; Shim, J.H.; Wood, B.C.; Yu, S. Material Design Strategy for Halide Solid Electrolytes Li3MX6 (X = Cl, Br, and I) for All-Solid-State High-Voltage Li-Ion Batteries. Chem. Mater. 2021, 33, 3669–3677. [Google Scholar] [CrossRef]
- Smith, T.; Moxon, S.; Tse, J.S.; Skelton, J.M.; Cooke, D.J.; Gillie, L.J.; da Silva, E.L.; Harker, R.M.; Storr, M.T.; Parker, S.C.; et al. Structural dynamics of Schottky and Frenkel defects in CeO2: A density-functional theory study. J. Phys. Energy 2023, 5, 025004. [Google Scholar] [CrossRef]
- Zhan, X.; Li, M.; Li, S.; Pang, X.; Mao, F.; Wang, H.; Sun, Z.; Han, X.; Jiang, B.; He, Y.-B.; et al. Challenges and opportunities towards silicon-based all-solid-state batteries. Energy Storage Mater. 2023, 61, 102875. [Google Scholar] [CrossRef]
- Lu, X.; Lian, G.J.; Ge, R.; Parker, J.; Sadan, M.K.; Smith, R.; Cumming, D. Microstructure of Conductive Binder Domain for Electrical Conduction in Next-Generation Lithium-Ion Batteries. Energy Technol. 2023, 11, 2300446. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30, 1705702. [Google Scholar] [CrossRef]
- Zuo, D.; Yang, L.; Zou, Z.; Li, S.; Feng, Y.; Harris, S.J.; Shi, S.; Wan, J. Ultrafast Synthesis of NASICON Solid Electrolytes for Sodium-Metal Batteries. Adv. Energy Mater. 2023, 13, 2301540. [Google Scholar] [CrossRef]
- Khan, K.; Xin, H.; Fu, B.; Bilal Hanif, M.; Li, P.; Admasu Beshiwork, B.; Fang, Z.; Motola, M.; Xu, Z.; Wu, M. Garnet/polymer solid electrolytes for high-performance solid-state lithium metal batteries: The role of amorphous Li2O2. J. Colloid Interf. Sci. 2023, 642, 246–254. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, Y.; Zhao, F.; Adair, K.; Zhao, R.; Li, S.; Zou, R.; Zhao, Y.; Sun, X. Antiperovskite Electrolytes for Solid-State Batteries. Chem. Rev. 2022, 122, 3763–3819. [Google Scholar] [CrossRef]
- Sicolo, S.; Albe, K. First-principles calculations on structure and properties of amorphous Li5P4O8N3 (LiPON). J. Power Sources 2016, 331, 382–390. [Google Scholar] [CrossRef]
- Kim, K.J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J.L.M. Solid-State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Adv. Energy Mater. 2021, 11, 2002689. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.P.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
- Luo, C.; Yi, M.; Cao, Z.; Hui, W.; Wang, Y. Review of Ionic Conductivity Properties of NASICON Type Inorganic Solid Electrolyte LATP. ACS Appl. Electron. Mater. 2024, 6, 641–657. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, W.; Su, X.; Li, J.; Su, M.; Zhou, X.; Sheldon, B.W.; Lu, W. Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li1+xAlxTi2-x(PO4)3 Solid Electrolyte for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2023, 13, 2203440. [Google Scholar] [CrossRef]
- Illbeigi, M.; Fazlali, A.; Kazazi, M.; Mohammadi, A.H. Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass–ceramics. Solid State Ion. 2016, 289, 180–187. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, T.; Wen, X.; Xu, H.; Fan, F.; Wang, X.; Tian, G.; Liu, S.; Liu, P.; Wang, C.; et al. Optimized Lithium Ion Coordination via Chlorine Substitution to Enhance Ionic Conductivity of Garnet-Based Solid Electrolytes. Small 2024, 20, 2309874. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.-T.; Wang, C.-A.; Xie, H.; Goodenough, J.B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012, 22, 15357–15361. [Google Scholar] [CrossRef]
- Qin, S.; Zhu, X.; Jiang, Y.; Ling, M.e.; Hu, Z.; Zhu, J. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett. 2018, 112, 113901. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Li, H.; Wu, F. Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci. 2023, 139, 101182. [Google Scholar] [CrossRef]
- Qi, B.; Hong, X.; Jiang, Y.; Shi, J.; Zhang, M.; Yan, W.; Lai, C. A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries. Nano-Micro Lett. 2024, 16, 71. [Google Scholar] [CrossRef]
- Le, H.T.T.; Kalubarme, R.S.; Ngo, D.T.; Jang, S.-Y.; Jung, K.-N.; Shin, K.-H.; Park, C.-J. Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium–oxygen batteries. J. Power Sources 2015, 274, 1188–1199. [Google Scholar] [CrossRef]
- Zhao, Z.; Pang, L.; Wu, Y.; Chen, Y.; Peng, Z. In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium-Oxygen Batteries. Adv. Energy Mater. 2023, 13, 2301127. [Google Scholar] [CrossRef]
- Jonderian, A.; Ting, M.; McCalla, E. Metastability in Li-La-Ti-O Perovskite Materials and Its Impact on Ionic Conductivity. Chem. Mater. 2021, 33, 4792–4804. [Google Scholar] [CrossRef]
- Zhao, Y.; Daemen, L.L. Superionic Conductivity in Lithium-Rich Anti-Perovskites. J. Am. Chem. Soc. 2012, 134, 15042–15047. [Google Scholar] [CrossRef]
- Mishra, A.K.; Chaliyawala, H.A.; Patel, R.; Paneliya, S.; Vanpariya, A.; Patel, P.; Ray, A.; Pati, R.; Mukhopadhyay, I. Review—Inorganic Solid State Electrolytes: Insights on Current and Future Scope. J. Electrochem. Soc. 2021, 168, 080536. [Google Scholar] [CrossRef]
- Chiang, S.-J.; Kaduk, J.A.; Shaw, L.L. High ionic conducting NaSICON enabled by mechanical activation enhanced reaction. Mater. Chem. Phys. 2024, 312, 128656. [Google Scholar] [CrossRef]
- Lacivita, V.; Westover, A.S.; Kercher, A.; Phillip, N.D.; Yang, G.; Veith, G.; Ceder, G.; Dudney, N.J. Resolving the Amorphous Structure of Lithium Phosphorus Oxynitride (Lipon). J. Am. Chem. Soc. 2018, 140, 11029–11038. [Google Scholar] [CrossRef] [PubMed]
- Jodlbauer, A.; Spychala, J.; Hogrefe, K.; Gadermaier, B.; Wilkening, H.M.R. Fast Li Ion Dynamics in Defect-Rich Nanocrystalline Li4PS4I-The Effect of Disorder on Activation Energies and Attempt Frequencies. Chem. Mater. 2024, 36, 1648–1664. [Google Scholar] [CrossRef]
- Chen, M.; Adams, S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electr. 2015, 19, 697–702. [Google Scholar] [CrossRef]
- Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K. Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery. J. Sol-Gel Sci. Technol. 2019, 89, 303–309. [Google Scholar] [CrossRef]
- Arnold, W.; Buchberger, D.A.; Li, Y.; Sunkara, M.; Druffel, T.; Wang, H. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X= Cl, Br, I) superionic conductors. J. Power Sources 2020, 464, 228158. [Google Scholar] [CrossRef]
- Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G. Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ion. 1981, 5, 663–666. [Google Scholar] [CrossRef]
- Cronau, M.; Szabo, M.; König, C.; Wassermann, T.B.; Roling, B. How to Measure a Reliable Ionic Conductivity? The Stack Pressure Dilemma of Microcrystalline Sulfide-Based Solid Electrolytes. ACS Energy Lett. 2021, 6, 3072–3077. [Google Scholar] [CrossRef]
- Hao, X.; Quirk, J.A.; Zhao, F.; Alahakoon, S.H.; Ma, J.; Fu, J.; Kim, J.T.; Li, W.; Li, M.; Zhang, S.; et al. Regulating Ion Diffusion and Stability in Amorphous Thiosilicate-Based Solid Electrolytes Through Edge-Sharing Local Structures. Adv. Energy Mater. 2024, 14, 2304556. [Google Scholar] [CrossRef]
- He, B.; Zhang, F.; Xin, Y.; Xu, C.; Hu, X.; Wu, X.; Yang, Y.; Tian, H. Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat. Rev. Chem. 2023, 7, 826–842. [Google Scholar] [CrossRef]
- Wenzel, S.; Weber, D.A.; Leichtweiss, T.; Busche, M.R.; Sann, J.; Janek, J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 2016, 286, 24–33. [Google Scholar] [CrossRef]
- Wu, Z.; Li, X.; Zheng, C.; Fan, Z.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; He, X.; Tao, X.; et al. Interfaces in Sulfide Solid Electrolyte-Based All-Solid-State Lithium Batteries: Characterization, Mechanism and Strategy. Electrochem. Energy R 2023, 6, 10. [Google Scholar] [CrossRef]
- Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ion. 2011, 182, 53–58. [Google Scholar] [CrossRef]
- Yu, P.; Ahmad, N.; Yang, J.; Zeng, C.; Liang, X.; Huang, W.; Ni, M.; Mao, P.; Yang, W. Dual-doping for enhancing chemical stability of functional anionic units in sulfide for high-performance all-solid-state lithium batteries. J. Energy Chem. 2023, 86, 382–390. [Google Scholar] [CrossRef]
- Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 2007, 178, 1163–1167. [Google Scholar] [CrossRef]
- Wang, S.; Fu, J.; Liu, Y.; Saravanan, R.S.; Luo, J.; Deng, S.; Sham, T.-K.; Sun, X.; Mo, Y. Design principles for sodium superionic conductors. Nat. Commun. 2023, 14, 7615. [Google Scholar] [CrossRef]
- Lu, P.; Wu, D.; Chen, L.; Li, H.; Wu, F. Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochem. Energy Rev. 2022, 5, 3. [Google Scholar] [CrossRef]
- Kaib, T.E.; Haddadpour, S.; Kapitein, M.; Bron, P.; Schröder, C.; Eckert, H.; Roling, B.; Dehnen, S. New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium ortho-Sulfidostannate Li4SnS4. Chem. Mater. 2012, 24, 2211–2219. [Google Scholar] [CrossRef]
- Huang, W.; Matsui, N.; Hori, S.; Suzuki, K.; Hirayama, M.; Yonemura, M.; Saito, T.; Kamiyama, T.; Sasaki, Y.; Yoon, Y.; et al. Anomalously High Ionic Conductivity of Li2SiS3-Type Conductors. J. Am. Chem. Soc. 2022, 144, 4989–4994. [Google Scholar] [CrossRef]
- Tao, B.; Ren, C.; Li, H.; Liu, B.; Jia, X.; Dong, X.; Zhang, S.; Chang, H. Thio-/LISICON and LGPS-Type Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2203551. [Google Scholar] [CrossRef]
- Jun, K.; Sun, Y.; Xiao, Y.; Zeng, Y.; Kim, R.; Kim, H.; Miara, L.J.; Im, D.; Wang, Y.; Ceder, G. Lithium superionic conductors with corner-sharing frameworks. Nat. Mater. 2022, 21, 924–931. [Google Scholar] [CrossRef]
- Kanno, R.; Murayama, M. Lithium Ionic Conductor Thio-LISICON. The Li2S-GeS2-P2S5 System. ChemInform 2001, 32. [Google Scholar] [CrossRef]
- Lu, X.; Windmüller, A.; Schmidt, D.; Schöner, S.; Tsai, C.-L.; Kungl, H.; Liao, X.; Chen, Y.; Yu, S.; Tempel, H.; et al. Li-Ion Conductivity of Single-Step Synthesized Glassy-Ceramic Li10GeP2S12 and Post-heated Highly Crystalline Li10GeP2S12. ACS Appl. Mater. Interface 2023, 15, 34973–34982. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Yu, C.; Wei, C.; Chen, S.; Chen, S.; Jiang, Z.; Peng, L.; Cheng, S.; Xie, J. Enabling superior electrochemical performances of Li10SnP2S12-based all-solid-state batteries using lithium halide electrolytes. Ceram. Int. 2023, 49, 11485–11493. [Google Scholar] [CrossRef]
- Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Appl. Energy Mater. 2018, 1, 3622–3629. [Google Scholar] [CrossRef]
- Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L.F. Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Lett. 2019, 4, 265–270. [Google Scholar] [CrossRef]
- Lu, P.; Xia, Y.; Sun, G.; Wu, D.; Wu, S.; Yan, W.; Zhu, X.; Lu, J.; Niu, Q.; Shi, S.; et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes. Nat. Commun. 2023, 14, 4077. [Google Scholar] [CrossRef]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030. [Google Scholar] [CrossRef]
- Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K.R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Li10Ge(P1-xSbx)2S12 Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chem. Mater. 2020, 32, 2664–2672. [Google Scholar] [CrossRef]
- Li, Y.; Song, S.; Kim, H.; Nomoto, K.; Kim, H.; Sun, X.; Hori, S.; Suzuki, K.; Matsui, N.; Hirayama, M.; et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50–53. [Google Scholar] [CrossRef]
- Liu, Y.; Su, H.; Zhong, Y.; Zheng, M.; Hu, Y.; Zhao, F.; Kim, J.T.; Gao, Y.; Luo, J.; Lin, X.; et al. Inhibiting Dendrites by Uniformizing Microstructure of Superionic Lithium Argyrodites for All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2024, 14, 2400783. [Google Scholar] [CrossRef]
- Adeli, P.; Bazak, J.D.; Huq, A.; Goward, G.R.; Nazar, L.F. Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chem. Mater. 2021, 33, 146–157. [Google Scholar] [CrossRef]
- Han, G.; Vasylenko, A.; Daniels, L.M.; Collins, C.M.; Corti, L.; Chen, R.; Niu, H.; Manning, T.D.; Antypov, D.; Dyer, M.S.; et al. Superionic lithium transport via multiple coordination environments defined by two-anion packing. Science 2024, 383, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chien, P.-H.; Wang, S.; Song, S.; Lu, M.; Chen, S.; Xia, S.; Liu, J.; Mo, Y.; Chen, H. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes. Nat. Chem. 2024, 16, 1584–1591. [Google Scholar] [CrossRef]
- Kanno, R.; Takeda, Y.; Mori, M.; Yamamoto, O. Ionic Conductivity and Structure of New Double Chloride Li6FeCl8 in the LiCl-FeCl2 System. Chem. Lett. 1987, 16, 1465–1468. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ueno, K.; Mizuno, K.; Takeuchi, K.; Asano, T.; Sakai, A. New Oxyhalide Solid Electrolytes with High Lithium Ionic Conductivity >10 mS cm−1 for All-Solid-State Batteries. Angew. Chem. Int. Ed. 2023, 62, e202217581. [Google Scholar] [CrossRef]
- Dai, T.; Wu, S.; Lu, Y.; Yang, Y.; Liu, Y.; Chang, C.; Rong, X.; Xiao, R.; Zhao, J.; Liu, Y.; et al. Inorganic glass electrolytes with polymer-like viscoelasticity. Nat. Energy 2023, 8, 1221–1228. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, S.; Wang, S.; Andrei, C.M.; Yuan, H.; Zhou, J.; Wang, J.; Zhuo, Z.; Zhong, Y.; Su, H.; et al. Revealing unprecedented cathode interface behavior in all-solid-state batteries with oxychloride solid electrolytes. Energy Environ. Sci. 2024, 17, 4055–4063. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Tang, Y.; Ye, D.; He, T.; Zhao, H.; Zhang, J. Electrochemically Stable Li3-xIn1-xHfxCl6 Halide Solid Electrolytes for All-Solid-State Batteries. ACS Appl. Mater. Interface 2023, 15, 5504–5511. [Google Scholar] [CrossRef]
- Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W.G. Mechanochemical Synthesis: A Tool to Tune Cation Site Disorder and Ionic Transport Properties of Li3MCl6 (M = Y, Er) Superionic Conductors. Adv. Energy Mater. 2020, 10, 1903719. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Wang, S.; Adair, K.R.; Li, W.; Zhao, Y.; Wang, C.; Hu, Y.; Zhang, L.; Zhao, S.; et al. Site-Occupation-Tuned Superionic LixScCl3+xHalide Solid Electrolytes for All-Solid-State Batteries. J. Am. Chem. Soc. 2020, 142, 7012–7022. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, J.; Luo, J.; Liu, J.; Li, X.; Zhao, F.; Li, R.; Huang, H.; Zhao, S.; Zhang, L.; et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 2021, 7, eabh1896. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K.R.; Wang, C.; Banis, M.N.; Sham, T.-K.; Zhang, L.; Zhao, S.; et al. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew. Chem. Int. Ed. 2019, 58, 16427–16432. [Google Scholar] [CrossRef] [PubMed]
- Steiner, H.J.; Lutz, H.D. Novel Fast Ion Conductors of the Type MI3MIIICl6 (MI: Li, Na, Ag; MIII: In, Y). ChemInform 1992, 23, 14. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Luo, J.; Norouzi Banis, M.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y.; et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 2019, 12, 2665–2671. [Google Scholar] [CrossRef]
- Luo, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J. Ionic Conductivity Enhancement of Li2ZrCl6 Halide Electrolytes via Mechanochemical Synthesis for All-Solid-State Lithium–Metal Batteries. ACS Appl. Mater. Interface 2022, 14, 49839–49846. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, F.; Chang, L.-Y.; Chuang, Y.-C.; Zhang, Z.; Zhu, Y.; Hao, X.; Fu, J.; Chen, J.; Luo, J.; et al. Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction. J. Am. Chem. Soc. 2024, 146, 2977–2985. [Google Scholar] [CrossRef]
- Yin, Y.-C.; Yang, J.-T.; Luo, J.-D.; Lu, G.-X.; Huang, Z.; Wang, J.-P.; Li, P.; Li, F.; Wu, Y.-C.; Tian, T.; et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 2023, 616, 77–83. [Google Scholar] [CrossRef]
- Fu, J.; Wang, S.; Liang, J.; Alahakoon, S.H.; Wu, D.; Luo, J.; Duan, H.; Zhang, S.; Zhao, F.; Li, W.; et al. Superionic Conducting Halide Frameworks Enabled by Interface-Bonded Halides. J. Am. Chem. Soc. 2023, 145, 2183–2194. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Zhao, F.; Wang, J.; Zhou, J.; Li, W.; Deng, S.; Fu, J.; Hao, X.; Li, R.; et al. Fluorinated Superionic Oxychloride Solid Electrolytes for High-Voltage All-Solid-State Lithium Batteries. ACS Energy Lett. 2024, 9, 1735–1742. [Google Scholar] [CrossRef]
- Shi, J.; Yao, Z.; Xiang, J.; Cai, C.; Tu, F.; Zhang, Y.; Yao, W.; Jia, Q.; Zhou, Y.; Shen, S.; et al. High-Conductivity Li2ZrCl6 Electrolytes via an Optimized Two-Step Ball-Milling Method for All-Solid-State Lithium–Metal Batteries. ACS Sustain. Chem. Eng. 2024, 12, 2009–2017. [Google Scholar] [CrossRef]
- Luo, X.; Cai, D.; Wang, X.; Xia, X.; Gu, C.; Tu, J. A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State Lithium–Metal Batteries. ACS Appl. Mater. Interface 2022, 14, 29844–29855. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, J.; Kim, J.T.; Sun, X. Prospects of halide-based all-solid-state batteries: From material design to practical application. Sci. Adv. 2022, 8, eadc9516. [Google Scholar] [CrossRef]
- Kwak, H.; Han, D.; Lyoo, J.; Park, J.; Jung, S.H.; Han, Y.; Kwon, G.; Kim, H.; Hong, S.-T.; Nam, K.-W.; et al. New Cost-Effective Halide Solid Electrolytes for All-Solid-State Batteries: Mechanochemically Prepared Fe3+-Substituted Li2ZrCl6. Adv. Energy Mater. 2021, 11, 2003190. [Google Scholar] [CrossRef]
- Zhou, L.; Zuo, T.-T.; Kwok, C.Y.; Kim, S.Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L.F. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 2022, 7, 83–93. [Google Scholar] [CrossRef]
- Liang, J.; van der Maas, E.; Luo, J.; Li, X.; Chen, N.; Adair, K.R.; Li, W.; Li, J.; Hu, Y.; Liu, J.; et al. A Series of Ternary Metal Chloride Superionic Conductors for High-Performance All-Solid-State Lithium Batteries. Adv. Energy Mater. 2022, 12, 2103921. [Google Scholar] [CrossRef]
- Park, J.; Han, D.; Kwak, H.; Han, Y.; Choi, Y.J.; Nam, K.-W.; Jung, Y.S. Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chem. Eng. J. 2021, 425, 130630. [Google Scholar] [CrossRef]
- Tomita, Y.; Matsushita, H.; Kobayashi, K.; Maeda, Y.; Yamada, K. Substitution effect of ionic conductivity in lithium ion conductor, LI3INBR6−xCLx. Solid State Ion. 2008, 179, 867–870. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, F.; Chen, J.; Fu, J.; Luo, J.; Alahakoon, S.H.; Chang, L.-Y.; Feng, R.; Shakouri, M.; Liang, J.; et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries. Nat. Commun. 2023, 14, 3780. [Google Scholar] [CrossRef]
- Li, F.; Cheng, X.; Lu, G.; Yin, Y.-C.; Wu, Y.-C.; Pan, R.; Luo, J.-D.; Huang, F.; Feng, L.-Z.; Lu, L.-L.; et al. Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes. J. Am. Chem. Soc. 2023, 145, 27774–27787. [Google Scholar] [CrossRef]
- Song, Z.; Wang, T.; Yang, H.; Kan, W.H.; Chen, Y.; Yu, Q.; Wang, L.; Zhang, Y.; Dai, Y.; Chen, H.; et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes. Nat. Commun. 2024, 15, 1481. [Google Scholar] [CrossRef]
- Zeng, Y.; Ouyang, B.; Liu, J.; Byeon, Y.-W.; Cai, Z.; Miara, L.J.; Wang, Y.; Ceder, G. High-entropy mechanism to boost ionic conductivity. Science 2022, 378, 1320–1324. [Google Scholar] [CrossRef]
- Wang, S.; Wang, K.; Zhang, Y.; Jie, Y.; Li, X.; Pan, Y.; Gao, X.; Nian, Q.; Cao, R.; Li, Q.; et al. High-entropy Electrolyte Enables High Reversibility and Long Lifespan for Magnesium Metal Anodes. Angew. Chem. Int. Ed. 2023, 62, e202304411. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Zhao, C.; Wu, D.; Wang, L.; Zheng, M.; Han, X.; Zhang, S.; Yue, J.; Xiao, B.; et al. The Universal Super Cation-Conductivity in Multiple-cation Mixed Chloride Solid-State Electrolytes. Angew. Chem. Int. Ed. 2023, 62, e202306433. [Google Scholar] [CrossRef]
- Strauss, F.; Lin, J.; Duffiet, M.; Wang, K.; Zinkevich, T.; Hansen, A.-L.; Indris, S.; Brezesinski, T. High-Entropy Polyanionic Lithium Superionic Conductors. ACS Mater. Lett. 2022, 4, 418–423. [Google Scholar] [CrossRef]
- Wilson, M.K.; Augustin, C.; Abhilash, A.; Jinisha, B.; Antony, A.; Jayaraj, M.K.; Jayalekshmi, S. Solid electrolyte membranes with Al2O3 nanofiller for fully solid-state Li-ion cells. Polym. Bull. 2024, 81, 6003–6024. [Google Scholar] [CrossRef]
- Liu, S.; Shan, H.; Xia, S.; Yan, J.; Yu, J.; Ding, B. Polymer Template Synthesis of Flexible SiO2 Nanofibers to Upgrade Composite Electrolytes. ACS Appl. Mater. Interface 2020, 12, 31439–31447. [Google Scholar] [CrossRef]
- Arya, A.; Saykar, N.G.; Sharma, A.L. Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. J. Appl. Polym. Sci. 2019, 136, 47361. [Google Scholar] [CrossRef]
- Xu, H.-m.; Jing, M.-x.; Li, J.; Huang, Z.-h.; Wang, T.-f.; Yuan, W.-y.; Ju, B.-w.; Shen, X.-q. Safety-Enhanced Flexible Polypropylene Oxide-ZrO2 Composite Solid Electrolyte Film with High Room-Temperature Ionic Conductivity. ACS Sustain. Chem. Eng. 2021, 9, 11118–11126. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Adv. Mater. 2019, 31, 1902029. [Google Scholar] [CrossRef]
- Pal, P.; Ghosh, A. Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 2018, 260, 157–167. [Google Scholar] [CrossRef]
- Liu, W.; Lin, D.; Sun, J.; Zhou, G.; Cui, Y. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. ACS Nano 2016, 10, 11407–11413. [Google Scholar] [CrossRef]
- Zheng, J.; Hu, Y.-Y. New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes. ACS Appl. Mater. Interface 2018, 10, 4113–4120. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Zhang, Q.; Wang, L.; Xu, Z.; Li, Y.; Huang, S. Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Solid Polymer Electrolytes for Flexible Lithium Batteries. ACS Appl. Energy Mater. 2020, 3, 5238–5246. [Google Scholar] [CrossRef]
- Nakayama, M.; Horie, T.; Natsume, R.; Hashimura, S.; Tanibata, N.; Takeda, H.; Maeda, H.; Kotobuki, M. Reaction Kinetics of Carbonation at the Surface of Garnet-Type Li7La3Zr2O12 as Solid Electrolytes for All-Solid-State Li Ion Batteries. J. Phys. Chem. C 2023, 127, 7595–7601. [Google Scholar] [CrossRef]
- Leng, J.; Wang, H.; Liang, H.; Xiao, Z.; Wang, S.; Zhang, Z.; Tang, Z. Storage of Garnet Solid Electrolytes: Insights into Air Stability and Surface Chemistry. ACS Appl. Energy Mater. 2022, 5, 5108–5116. [Google Scholar] [CrossRef]
- Vu, T.T.; Cheon, H.J.; Shin, S.Y.; Jeong, G.; Wi, E.; Chang, M. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Mater. 2023, 61, 102876. [Google Scholar] [CrossRef]
- Fan, L.-Z.; He, H.; Nan, C.-W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar] [CrossRef]
- Lin, D.; Liu, W.; Liu, Y.; Lee, H.R.; Hsu, P.-C.; Liu, K.; Cui, Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). Nano Lett. 2016, 16, 459–465. [Google Scholar] [CrossRef]
- Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099. [Google Scholar] [CrossRef]
- Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Lett. 2015, 15, 2740–2745. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Zhang, L.; Qian, W.; Wu, X.; Dong, K.; Zhang, H.; Zhang, S. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries. Adv. Mater. 2020, 32, 2000399. [Google Scholar] [CrossRef]
- Jeon, H.; Hoang, H.A.; Kim, D. Flexible PVA/BMIMOTf/LLZTO composite electrolyte with liquid-comparable ionic conductivity for solid-state lithium metal battery. J. Energy Chem. 2022, 74, 128–139. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.; Zhang, Q.; Li, C.; Xu, C.; Ma, Y.; Shi, X.; Zhang, H.; Song, D.; Zhang, L. Li-Ion Transfer Mechanism of Ambient-Temperature Solid Polymer Electrolyte toward Lithium Metal Battery. Adv. Energy Mater. 2023, 13, 2204036. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, F.; Wang, X.; Weng, S.; Yang, X.; Zhao, H.; Guo, R.; Sun, Y.; Zhao, W.; Song, T.; et al. 8.5 µm-Thick Flexible-Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air-Stable and Interface-Compatible All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2022, 12, 2200368. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, S.; van Eck, E.R.H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967. [Google Scholar] [CrossRef]
- Nourisabet, T.; Jamshidi Aval, H.; Shidpour, R.; Naji, L. Fabrication of a PEO-PVDF blend based polymer composite electrolyte with extremely high ionic conductivity via the addition of LLTO nanowires. Solid State Ion. 2022, 377, 115885. [Google Scholar] [CrossRef]
- Lin, D.; Yuen, P.Y.; Liu, Y.; Liu, W.; Liu, N.; Dauskardt, R.H.; Cui, Y. A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus. Adv. Mater. 2018, 30, 1802661. [Google Scholar] [CrossRef]
- Duan, T.; Cheng, H.; Liu, Y.; Sun, Q.; Nie, W.; Lu, X.; Dong, P.; Song, M.-K. A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries. Energy Storage Mater. 2024, 65, 103091. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z.; Zhang, X.; He, P.; Zhou, H.; Wagemaker, M. Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries. Joule 2020, 4, 1311–1323. [Google Scholar] [CrossRef]
- Richards, W.D.; Miara, L.J.; Wang, Y.; Kim, J.C.; Ceder, G. Interface Stability in Solid-State Batteries. Chem. Mater. 2016, 28, 266–273. [Google Scholar] [CrossRef]
- Maier, J. Ionic conduction in space charge regions. Prog Solid State Chem. 1995, 23, 171–263. [Google Scholar] [CrossRef]
- Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery. Chem. Mater. 2014, 26, 4248–4255. [Google Scholar] [CrossRef]
- Jiang, W.; Min, F.; Yang, Y.; Zhang, X.; Yang, T.; Mao, S.S.; Zhang, Q.; Xie, J. Study on LiPO3@HC composite anodes with high capacity and rate capability for lithium ion capacitors. Electrochim. Acta 2021, 370, 137810. [Google Scholar] [CrossRef]
- Woo, J.H.; Trevey, J.E.; Cavanagh, A.S.; Choi, Y.S.; Kim, S.C.; George, S.M.; Oh, K.H.; Lee, S.-H. Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries. J. Electrochem. Soc. 2012, 159, A1120. [Google Scholar] [CrossRef]
- Dong, Q.; Hong, B.; Fan, H.; Gao, C.; Huang, X.; Bai, M.; Zhou, Y.; Lai, Y. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode. Energy Storage Mater. 2022, 45, 1220–1228. [Google Scholar] [CrossRef]
- Welch, C.; Cho, K.T.; Srinivasan, V. Modeling Analysis of Ball-Milling Process for Battery-Electrode Synthesis. Chem. Mater. 2024, 36, 6748–6764. [Google Scholar] [CrossRef]
- Han, L.; Hsieh, C.-T.; Chandra Mallick, B.; Li, J.; Ashraf Gandomi, Y. Recent progress and future prospects of atomic layer deposition to prepare/modify solid-state electrolytes and interfaces between electrodes for next-generation lithium batteries. Nanoscale Adv. 2021, 3, 2728–2740. [Google Scholar] [CrossRef]
- Sun, H.; Kim, H.; Xu, X.; Fei, L.; Jung, W.; Shao, Z. Thin Films Fabricated by Pulsed Laser Deposition for Electrocatalysis. Renewables 2023, 1, 21–38. [Google Scholar] [CrossRef]
- Bin Mamtaz, M.R.; Michaud, X.; Jo, H.; Park, S.S. Stress and Manufacturability in Solid-State Lithium-Ion Batteries. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 1093–1137. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Zhao, C.; van der Maas, E.; Lin, K.; Arszelewska, V.A.; Li, B.; Ganapathy, S.; Wagemaker, M. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nat. Commun. 2021, 12, 5943. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 2015, 278, 98–105. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Fan, L.-Z.; Nan, C.-W.; Zhang, Q. Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries. Adv. Funct. Mater. 2019, 29, 1901047. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3, 57–94. [Google Scholar] [CrossRef]
- Ye, L.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222. [Google Scholar] [CrossRef]
- Huo, H.; Wu, B.; Zhang, T.; Zheng, X.; Ge, L.; Xu, T.; Guo, X.; Sun, X. Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67. [Google Scholar] [CrossRef]
- Ma, J.; Feng, X.; Wu, Y.; Wang, Y.; Liu, P.; Shang, K.; Jiang, H.; Hou, X.; Mitlin, D.; Xiang, H. Stable sodium anodes for sodium metal batteries (SMBs) enabled by in-situ formed quasi solid-state polymer electrolyte. J. Energy Chem. 2023, 77, 290–299. [Google Scholar] [CrossRef]
- Yue, L.; Wang, X.; Li, C.; Shen, D.; Shao, Z.; Wu, H.; xiao, s.; Liang, W.; Yu, Y.; Li, Y. In-situ interface engineering of highly nitrogen-rich triazine-based covalent organic frameworks for ultra-stable, dendrite-free lithium-metal anode. Energy Environ. Sci. 2024, 17, 1117–1131. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, S.; Yi, X.; Chi, S.; Yin, X.; Geng, C.; Yin, Q.; Zhan, Q.; Zhao, Z.; Jin, F.-M.; et al. Fluorinating All Interfaces Enables Super-Stable Solid-State Lithium Batteries by In Situ Conversion of Detrimental Surface Li2CO3. Adv. Mater. 2024, 36, 2308493. [Google Scholar] [CrossRef]
- Hänsel, C.; Singh, B.; Kiwic, D.; Canepa, P.; Kundu, D. Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chem. Mater. 2021, 33, 6029–6040. [Google Scholar] [CrossRef]
- Yang, C.; Xie, H.; Ping, W.; Fu, K.; Liu, B.; Rao, J.; Dai, J.; Wang, C.; Pastel, G.; Hu, L. An Electron/Ion Dual-Conductive Alloy Framework for High-Rate and High-Capacity Solid-State Lithium-Metal Batteries. Adv. Mater. 2019, 31, 1804815. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ji, X.; Zhang, B.; Rodrigo, N.D.; Hou, S.; Gaskell, K.; Deng, T.; Wan, H.; Liu, S.; Xu, J.; et al. Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. ACS Energy Lett. 2022, 7, 131–139. [Google Scholar] [CrossRef]
- Kharabadze, S.; Thorn, A.; Koulakova, E.A.; Kolmogorov, A.N. Prediction of stable Li-Sn compounds: Boosting ab initio searches with neural network potentials. NPJ Comput. Mater. 2022, 8, 136. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Zhang, B. Approaching Microsized Alloy Anodes via Solid Electrolyte Interphase Design for Advanced Rechargeable Batteries. Adv. Energy Mater. 2023, 13, 2302119. [Google Scholar] [CrossRef]
- Jäckle, M.; Helmbrecht, K.; Smits, M.; Stottmeister, D.; Groß, A. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries? Energy Environ. Sci. 2018, 11, 3400–3407. [Google Scholar] [CrossRef]
- Tong, Z.; Wang, S.-B.; Liao, Y.-K.; Hu, S.-F.; Liu, R.-S. Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS Appl. Mater. Interface 2020, 12, 47181–47196. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.; Zhong, L.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture. Adv. Funct. Mater. 2020, 30, 1907717. [Google Scholar] [CrossRef]
- Shi, C.; Yu, M. Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Mater. 2023, 57, 429–459. [Google Scholar] [CrossRef]
- Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Wang, S.; Bai, Q.; Nolan, A.M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y. Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. Angew. Chem. Int. Ed. 2019, 58, 8039–8043. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interface 2015, 7, 23685–23693. [Google Scholar] [CrossRef]
- Zhu, Y.; He, X.; Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4, 3253–3266. [Google Scholar] [CrossRef]
- Zhang, W.; Richter, F.H.; Culver, S.P.; Leichtweiss, T.; Lozano, J.G.; Dietrich, C.; Bruce, P.G.; Zeier, W.G.; Janek, J. Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery. ACS Appl. Mater. Interfaces 2018, 10, 22226–22236. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal –OH group? Energy Environ. Sci. 2020, 13, 1318–1325. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, L.; Lin, Z.; Tang, M.; Ding, P.; Guo, X.; Zhang, Z.; Liu, S.; Wang, B.; Yin, X.; et al. Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 2022, 96, 107105. [Google Scholar] [CrossRef]
- Zhao, C.-Z.; Zhang, X.-Q.; Cheng, X.-B.; Zhang, R.; Xu, R.; Chen, P.-Y.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Jiang, X.; Liu, Q.; Dong, J.; Wang, J.; Zhou, X.; Li, B.; Yin, G.; Jiang, Z.; et al. Constructing Interfacial Nanolayer Stabilizes 4.3 V High-Voltage All-Solid-State Lithium Batteries with PEO-Based Solid-State Electrolyte. Adv. Funct. Mater. 2022, 32, 2113068. [Google Scholar] [CrossRef]
- Kim, J.S.; Jung, S.; Kwak, H.; Han, Y.; Kim, S.; Lim, J.; Lee, Y.M.; Jung, Y.S. Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-State Li batteries. Energy Storage Mater. 2023, 55, 193–204. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Y.; Banis, M.N.; Sun, Q.; Adair, K.R.; Li, R.; Sham, T.K.; Sun, X. Atomic Layer Deposition of Lithium Niobium Oxides as Potential Solid-State Electrolytes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification. Adv. Mater. 2006, 18, 2226–2229. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Xu, J.; Bian, Y.; Wang, L.; Liang, G. Regulation on electrochemical performance of LiNi0.5Mn1.5O4 cathode material via lithium silicate coating with different Li/Si ratio. J. Solid State Chem. 2023, 325, 124175. [Google Scholar] [CrossRef]
- Yao, X.; Chen, S.; Wang, C.; Chen, T.; Li, J.; Xue, S.; Deng, Z.; Zhao, W.; Nan, B.; Zhao, Y.; et al. Interface Welding via Thermal Pulse Sintering to Enable 4.6 V Solid-State Batteries. Adv. Energy Mater. 2024, 14, 2303422. [Google Scholar] [CrossRef]
- Duan, H.; Fan, M.; Chen, W.-P.; Li, J.-Y.; Wang, P.-F.; Wang, W.-P.; Shi, J.-L.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries. Adv. Mater. 2019, 31, 1807789. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Jiang, M.; Li, X.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F.; Zhang, S.; et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 2020, 76, 105015. [Google Scholar] [CrossRef]
Type | Conductivity (S cm−1) | Advantages | Disadvantages | Refs. |
---|---|---|---|---|
Oxide electrolytes | 10−5–10−3 | High chemical/mechanical stability High electrochemical oxidation voltage (0–5 V) | Rigid structure High processing temperature High interfacial resistance at the electrode–electrolyte interface | [13,70,71] |
Sulfide electrolytes | 10−7–10−2 | Excellent conductivity Flexible shape High mechanical strength | Low oxidation stability Sensitivity to moisture Low compatibility with cathode materials | [72,73] |
Li–halides electrolytes | 10−8–10−3 | Stable with lithium metal High mechanical strength Electrochemical stability | Instability in regard to cathode materials Low ionic conductivity | [74,75] |
Halide SEs | σLi (mS cm−1) @RT | Ea | Refs. |
---|---|---|---|
Li3InCl6 | 1.49–2.04 | 0.35 eV | [145] |
Li2ZrCl6 | 0.446 | 0.31 eV | [146] |
Li2.25Zr0.75Fe0.25Cl6 | 0.98 | 0.346 eV | [154] |
Li2InxSc0.666−xCl4 | 1.83–2.03 | 0.33 eV | [155] |
Li2.73Ho1.09Cl6 | 1.3 | 0.4 eV | [156] |
Li6PS5Cl0.25Br0.75 | 3.9 | / | [126] |
Li2.6Yb0.6Hf0.4Cl6 | 1.5 | 0.26 eV | [157] |
Li3InBr3Cl3 | 0.12 | 0.21 eV | [158] |
1.5Li2O-TaCl5 | 6.6 | 0.274 eV | [159] |
A-LTC | 7.16 | / | [160] |
Polymer/Li Salt | Filler | Concentration | Morphology | Additive | tLi+ | σ (S cm−1) | Refs. |
---|---|---|---|---|---|---|---|
PEO-PVDF/LiNO3 | Al2O3 | 2% | Nanoparticle | / | 0.33 | 1.25 × 10−4/30 °C | [166] |
PEO/LiClO4 | SiO2 | 10% | Nanoparticle | / | / | 4.4 × 10−5/30 °C | [179] |
PEO/LiTFSI | Li6.4La3Zr2Al0.2O12 | / | 3D | / | / | 2.5 × 10−4/RT | [180] |
PAN/LiClO4 | LLTO | 15% | Nanowires | / | / | 2.4 × 10−4/RT | [181] |
PEG-PEO/LiTFSI | LGPS | 3% | Micro-sized | CTMS | 0.68 | 9.83 × 10−4/RT | [182] |
PVA/LiCF3SO3 | PDA-coated LLZTO | 7% | Nanoparticles | 60%BMIMOTf | 0.76 | 2 × 10−3/RT | [183] |
PEO | LLZO | / | / | SN | 0.35 | 0.74 × 10−4/RT | [184] |
PEGMEMA/LiTFSI | LAGP | 25% | Nanoscale | AIBN | 0.87 | 2.37 × 10−4/RT | [185] |
PEO/LiTFSI | Li6PS5Cl | 10% | Micro-sized | Ionic liquid | / | 2.47 × 10−4/25 °C | [186] |
PEO-PVDF | Li0.33La0.55TiO3 | 8% | Nanowires | DMF + glycerin | 0.86 | 6.02 × 10−3/25 °C | [187] |
Country | Corporation | Solid-State Electrolyte Type | Present Situation |
---|---|---|---|
China | Welion New Energy | Hybrid oxide solid–liquid electrolyte | Achieves an energy density of 360 Wh kg−1, was mass produced in 2022, can power an EV for 1000 km on a single charge. |
ProLogium | Hybrid oxide solid–liquid electrolyte | Achieves energy densities of 383 Wh kg−1 and 1025 Wh/L for 500 cycles. The company plans to start trial production of the ASSLBs in 2023 and mass production in 2024. | |
QingTao | Hybrid oxide solid–liquid electrolyte | Achieves an energy density of 368 Wh kg−1 and a discharge capacity (1/3C) of over 116 A. | |
Ganfeng Lithium | Hybrid solid–liquid/solid electrolyte | Second-generation ASSLBs, with an energy density of 360 Wh kg−1 are under investigation. | |
Gotion High-tech | Hybrid solid–liquid electrolyte | Achieves a capacity of 136 Ah and an energy density of 360 Wh kg−1. | |
CATL | Sulfide SE | The ASSLBs are expected to be commercialized around 2030. | |
SUNWODA | Sulfide SE | Among them, the latest ampere-hour samples of the first-generation of all-solid-state batteries can achieve a stable cycle of more than 1000 weeks. The second-generation laboratory samples have reached an energy density target of 500 Wh/kg. | |
SVOLT | Sulfide SE | The company created in July 2022 a 20 Ah-class ASSLB that can reach an energy density of 350 Wh kg−1. | |
Enpower | Sulfide SE | Developed a prototype ASSLB, which has a capacity retention of 80% after 1000 cycles at 1C and 100% depth of discharge (DOD). | |
Mache Power | Sulfide SE | Achieves an energy density of 250 Wh kg−1. | |
High Energy Era | Sulfide SE | Prepared 1.46 Ah sulfide-based ASSLB, with an energy density of >330 Wh kg−1. | |
China Automotive Innovation Corporation | Sulfide SE | The trial production of 10 Ah ASSLBs has been successfully completed. | |
USA | Solid power | Sulfide SE | 0.2 Ah Li metal-anode ASSLBs have been successfully assembled and are under evaluation. |
Quantumscape | Oxide SE | Their batteries have achieved 1000 Wh/L, 350 Wh kg−1, and 4C fast charge. | |
SES | Hybrid solid–liquid electrolyte | Released a 107 Ah battery, Li-metal battery worldwide, with 935 Wh/L and 417 Wh kg−1. | |
Factorial Energy | Factorial electrolyte | The 40 Ah SSLB demonstrated a 97.3% capacity retention rate after 675 cycles. | |
Japan | Toyota | Sulfide SE | In September 2020, an all-solid-state battery prototype vehicle was built and driving data were obtained. |
Hitachi Zosen | Sulfide SE | The company announced that it has developed an ASSLB with a capacity of 1 Ah and capable of operating at harsh temperatures (−40–120 °C). | |
Nissan | Sulfide SE | The pilot plant in Yokohama will be ready by 2024 and CNY 140 billion will be invested into the ASSLB by 2026. | |
South Korea | Samsung SDI | Sulfide SE | In March 2020, Samsung SDI released a prototype pouch ASSLB with a Ag-C anode, which achieved a high-energy density (>900 Wh/L) and a long cycle life (1000 cycles). |
LG Chem | Sulfide/polymer SE | Achieved an ASSLB with an all-silicon anode, which reached a capacity retention of 80% after 500 cycles. | |
SK Innovation | Sulfide SE | SK Innovation chose Solid Power as a partner and has invested USD 30 million to develop SSLBs, with an energy density of 930 Wh/L. | |
Europe | Oxis Energy | Hybrid solid–liquid electrolyte | OXIS has filed nine new families of patents to protect both quasi- and solid-state intellectual property rights. |
Ilika | Oxide SE | SSLBs have demonstrated >500 cycles without failure and 1C discharge cycling at 25 °C. | |
Bollore | Polymer PEO | Achieved an energy density of >250 Wh kg−1 and cycling life of over 4000 times at 50–80 °C. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, S.; Wu, X.; Wang, J.; Li, X.; Hao, X.; Meng, Y. Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges. Nanomaterials 2024, 14, 1773. https://doi.org/10.3390/nano14221773
Ai S, Wu X, Wang J, Li X, Hao X, Meng Y. Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges. Nanomaterials. 2024; 14(22):1773. https://doi.org/10.3390/nano14221773
Chicago/Turabian StyleAi, Shun, Xianli Wu, Jintao Wang, Xu Li, Xiaofeng Hao, and Yuezhong Meng. 2024. "Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges" Nanomaterials 14, no. 22: 1773. https://doi.org/10.3390/nano14221773
APA StyleAi, S., Wu, X., Wang, J., Li, X., Hao, X., & Meng, Y. (2024). Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges. Nanomaterials, 14(22), 1773. https://doi.org/10.3390/nano14221773