Non-Adiabatic Excited-State Time-Dependent GW (TDGW) Molecular Dynamics Simulation of Nickel-Atom Aided Photolysis of Methane to Produce a Hydrogen Molecule
Abstract
:1. Introduction
2. Method
2.1. Time-Dependent QP Equation
2.2. One-Shot Within TDQP
2.3. Ab Initio Cloning in NA-ES-TD-MD
2.4. Computational Details
3. Results
3.1. H Ejection Opposite to the Ni Side
3.2. H Ejection Towards the Ni Side
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | density functional theory |
TD | time-dependent |
TDDFT | time-dependent density functional theory |
LDA | local density approximation |
ALDA | adiabatic local density approximation |
MD | molecular dynamics |
ES | excited state |
GS | ground state |
QP | quasiparticle |
EQPT | extended quasiparticle theory |
vac | vacuum level |
GWA | approximation |
SH | surface hopping |
TD | Non-adiabatic excited-state time-dependent |
PW | plane wave |
AO | atomic orbital |
HOMO | highest occupied molecular orbital |
LUMO | lowest unoccupied molecular orbital |
IP | ionization potential |
EA | electron affinity |
PAE | photoabsorption energy |
References
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. Handbook of Liquefied Natural Gas, 3rd ed.; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 1–624. [Google Scholar]
- Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Züttel, A. Hydrogen storage methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Donne, S. Experimental study for thermal methane cracking reaction to generate very pure hydrogen in small or medium scales by using regenerative reactor. Front. Energy Res. 2022, 10, 1. [Google Scholar] [CrossRef]
- Laufer, A.H.; McNesby, J.R. Photolysis of methane at 1236-Å: Quantum yield of hydrogen formation. J. Chem. Phys. 1968, 49, 2272–2278. [Google Scholar] [CrossRef]
- Rebbert, R.; Ausloos, P. Photolysis of methane: Quantum yield of C(1D) and CH. J. Photochem. 1972, 1, 171–176. [Google Scholar] [CrossRef]
- Brownsword, R.; Hillenkamp, M.; Laurent, T.; Vatsa, R.; Volpp, H.-R.; Wolfrum, J. Quantum yield for H atom formation in the methane dissociation after photoexcitation at the lyman-α (121.6 nm) wavelength. Chem. Phys. Lett. 1997, 266, 259–266. [Google Scholar] [CrossRef]
- Lee, L.C.; Chiang, C.C. Fluorescence yield from photodissociation of CH4 at 1060-1420 Å. J. Chem. Phys. 1983, 78, 688–691. [Google Scholar] [CrossRef]
- Mebel, A.M.; Lin, S.-H.; Chang, C.-H. Theoretical study of vibronic spectra and photodissociation pathways of methane. J. Chem. Phys. 1997, 106, 2612–2620. [Google Scholar] [CrossRef]
- York, A.P.; Xiao, T.; Green, M.L. Brief overview of the partial oxidation of methane to synthesis gas. Top. Catal. 2003, 22, 345–358. [Google Scholar] [CrossRef]
- Matsumura, Y.; Nakamori, T. Steam reforming of methane over nickel catalysts at low reaction temperature. Appl. Catal. A Gen. 2004, 258, 107–114. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Daud, W.M.A.W.; Abbas, H.F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane–A review. Renew. Sust. Energ. Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef]
- Keipi, T.; Tolvanen, H.; Konttinen, J. Economic analysis of hydrogen production by methane thermal decomposition: Comparison to competing technologies. Energy Convers. Manag. 2018, 159, 264–273. [Google Scholar] [CrossRef]
- Qian, J.X.; Chen, T.W.; Enakonda, L.R.; Liu, D.B.; Basset, J.-M.; Zhou, L. Methane decomposition to pure hydrogen and carbon nano materials: State-of-the-art and future perspectives. Int. J. Hydrogen Energy 2020, 45, 15721–15743. [Google Scholar] [CrossRef]
- Fan, Z.; Weng, W.; Zhou, J.; Gu, D.; Xiao, W. Catalytic decomposition of methane to produce hydrogen: A review. J. Energy Chem. 2021, 58, 415–430. [Google Scholar] [CrossRef]
- Pham, C.Q.; Siang, T.J.; Kumar, P.S.; Ahmad, Z.; Xiao, L.; Bahari, M.B.; Cao, A.N.T.; Rajamohan, N.; Qazaq, A.S.; Kumar, A.; et al. Production of hydrogen and value-added carbon materials by catalytic methane decomposition: A review. Environ. Chem. Lett. 2022, 20, 2339–2359. [Google Scholar] [CrossRef]
- Abanades, S.; Kimura, H.; Otsuka, H. Hydrogen production from CO2-free thermal decomposition of methane: Design and on-sun testing of a tube-type solar thermochemical reactor. Fuel Process. Tech. 2014, 122, 153–162. [Google Scholar] [CrossRef]
- Pinilla, J.L.; Torres, D.; Lázaro, M.J.; Suelves, I.; Moliner, R.; Cañadas, I.; Rodríguez, J.; Vidal, A.; Martínez, D. Metallic and carbonaceous-based catalysts performance in the solar catalytic decomposition of methane for hydrogen and carbon production. Int. J. Hydrogen Energy 2012, 37, 9645–9655. [Google Scholar] [CrossRef]
- Boretti, A. A perspective on the production of hydrogen from solar-driven thermal decomposition of methane. Int. J. Hydrogen Energy 2021, 46, 34509–34514. [Google Scholar] [CrossRef]
- Jia, S.; Cao, X.; Yuan, X.; Yu, K.-T. Multi-objective topology optimization for the solar thermal decomposition of methane reactor enhancement. Chem. Eng. Sci. 2021, 231, 116265. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Petersilka, M.; Gossmann, U.J.; Gross, E.K.U. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 1996, 76, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Manjanath, A.; Sahara, R.; Ohno, K.; Kawazoe, Y. Non-adiabatic excited-state time-dependent GW molecular dynamics (TDGW) satisfying extended Koopmans’ theorem: An accurate description of methane photolysis. J. Chem. Phys. 2024, 160, 184102. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Ono, S.; Isobe, T. A simple derivation of the exact quasiparticle theory and its extension to arbitrary initial excited eigenstates. J. Chem. Phys. 2017, 146, 084108. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Esfarjani, K.; Kawazoe, Y. Computational Materials Science: From Ab Initio to Monte Carlo Methods, 2nd ed.; Springer: Heidelberg, Germany, 2018; pp. 1–427. [Google Scholar]
- Morrell, M.M.; Parr, R.G.; Levy, M. Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density. J. Chem. Phys. 1975, 62, 549–554. [Google Scholar] [CrossRef]
- Smith, D.W.; Day, O.W. Extension of Koopmans’ theorem. I. Derivation. J. Chem. Phys. 1975, 62, 113–114. [Google Scholar] [CrossRef]
- Sahara, R.; Mizuseki, H.; Sluiter, M.H.F.; Ohno, K.; Kawazoe, Y. Effect of a nickel dimer on the dissociation dynamics of a hydrogen molecule. RSC Adv. 2013, 3, 12307–12312. [Google Scholar] [CrossRef]
- Burghgraef, H.; Jansen, A.P.J.; van Santen, R.A. Electronic structure calculations and dynamics of methane activation on nickel and cobalt. J. Chern. Phys. 1994, 101, 11012–11020. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Du, A.; Chen, J.; Zhu, Z.; Smith, S.C. Theoretical study of two states reactivity of methane activation on iron atom and iron dimer. Fuel 2012, 96, 291–297. [Google Scholar] [CrossRef]
- Wang, J.-T.; Chen, C.; Ohno, K.; Wang, E.; Chen, X.-L.; Wang, D.-S.; Mizuseki, H.; Kawazoe, Y. Atomistic nucleation and growth mechanism for single-wall carbon nanotubes. on catalytic nanoparticle. Nanotechnology 2010, 21, 115602. [Google Scholar] [CrossRef]
- Pham, T.N.; Ono, S.; Ohno, K. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol. J. Chem. Phys. 2016, 144, 144309. [Google Scholar] [CrossRef] [PubMed]
- Saalmann, U.; Schmidt, R. Non-adiabatic quantum molecular dynamics: Basic formalism and case study. Z. Phys. D Atom. Mol. Clust. 1996, 38, 153–163. [Google Scholar] [CrossRef]
- Makhov, D.V.; Glover, W.J.; Martinez, T.J.; Shalashilin, D.V. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys. 2014, 141, 054110. [Google Scholar] [CrossRef] [PubMed]
- Hybertsen, M.S.; Louie, S.G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390–5413. [Google Scholar] [CrossRef] [PubMed]
- Tully, J.C.; Preston, R.K. Trajectory surface hopping approach to non-adiabatic molecular collisions: The reaction of H+ with D2. J. Chem. Phys. 1971, 55, 562–572. [Google Scholar] [CrossRef]
- Tully, J.C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061–1071. [Google Scholar] [CrossRef]
- Ohno, K.; Manjanath, A.; Kawazoe, Y.; Hatakeyama, R.; Misaizu, F.; Kwon, E.; Fukumura, H.; Ogasawara, H.; Yamada, Y.; Zhang, C.; et al. Extensive First-Principles Molecular Dynamics Study on the Li Encapsulation into C60 and Its Experimental Confirmation. Nanoscale 2018, 10, 1825–1836. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Manjanath, A.; Ohno, K.; Inagaki, M.; Sekimoto, S.; Kawazoe, Y. Creation of Mo/Tc@C60 and Au@C60 and molecular-dynamics simulations. RSC Adv. 2021, 11, 19666–19672. [Google Scholar] [CrossRef]
- Ono, S.; Noguchi, Y.; Sahara, R.; Kawazoe, Y.; Ohno, K. TOMBO: All-electron mixed-basis approach to condensed matter physics. Comput. Phys. Commun. 2015, 189, 20–30. [Google Scholar] [CrossRef]
- Klinke, D.J.; Wilke, S.; Broadbelt, L.J. A Theoretical Study of Carbon Chemisorption on Ni(111) and Co(0001) Surfaces. J. Catal. 1998, 158, 540–554. [Google Scholar] [CrossRef]
- Watanabe, K. Ionization potentials of some molecules. J. Chem. Phys. 1957, 26, 542–547. [Google Scholar] [CrossRef]
- Collin, J.E.; Delwiche, J. Ionization of methane and its electronic energy levels. Can. J. Chem. 1967, 45, 1875–1882. [Google Scholar] [CrossRef]
- Cook, P.A.; Ashfold, M.N.R.; Jee, Y.-J.; Jung, K.-H.; Harich, S.; Yang, X. Vacuum ultraviolet photochemistry of methane, silane and germane. Phys. Chem. Chem. Phys. 2001, 3, 1848–1860. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Molecular spectra and molecular structure. In Constants of Diatomic Molecules; Van Nostrand Reinhold Co.: New York, NY, USA, 1979; Volume IV. [Google Scholar]
- Herzberg, G.; Jungen, C. Rydberg series and ionization potential of the H2 molecule. J. Mol. Spectrosc. 1972, 41, 425–486. [Google Scholar] [CrossRef]
- Gruzdkov, Y.A.; Watanabe, K.; Sawabe, K.; Matsumoto, Y. Photochemical C−H bond activation of methane on a Pt(111) surface. Chem. Phys. Lett. 1994, 227, 243–247. [Google Scholar] [CrossRef]
- Troß, J.; Carter-Fenk, K.; Cole-Filipiak, N.C.; Schrader, P.; Word, M.; McCaslin, L.M.; Head-Gordon, M.; Ramasesha, K. Excited-state dynamics during primary C−I homolysis in acetyl iodide revealed by ultrafast core-level spectroscopy. J. Phys. Chem. A 2023, 127, 4103–4114. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Level | -Spin (eV) | -Spin (eV) | ||
---|---|---|---|---|
21 | LUMO | LUMO+2 | ||
20 | HOMO | LUMO+1 | ||
19 | HOMO−1 | LUMO | ||
18 | HOMO−2 | HOMO | ||
17 | HOMO−3 | HOMO−1 | ||
16 | HOMO−4 | HOMO−2 | ||
15 | HOMO−5 | HOMO−3 | ||
14* | HOMO−6 | HOMO−4 | ||
13 | HOMO−7 | HOMO−5 | ||
12 | HOMO−8 | HOMO−6 | ||
11 | HOMO−9 | HOMO−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjanath, A.; Sahara, R.; Kawazoe, Y.; Ohno, K. Non-Adiabatic Excited-State Time-Dependent GW (TDGW) Molecular Dynamics Simulation of Nickel-Atom Aided Photolysis of Methane to Produce a Hydrogen Molecule. Nanomaterials 2024, 14, 1775. https://doi.org/10.3390/nano14221775
Manjanath A, Sahara R, Kawazoe Y, Ohno K. Non-Adiabatic Excited-State Time-Dependent GW (TDGW) Molecular Dynamics Simulation of Nickel-Atom Aided Photolysis of Methane to Produce a Hydrogen Molecule. Nanomaterials. 2024; 14(22):1775. https://doi.org/10.3390/nano14221775
Chicago/Turabian StyleManjanath, Aaditya, Ryoji Sahara, Yoshiyuki Kawazoe, and Kaoru Ohno. 2024. "Non-Adiabatic Excited-State Time-Dependent GW (TDGW) Molecular Dynamics Simulation of Nickel-Atom Aided Photolysis of Methane to Produce a Hydrogen Molecule" Nanomaterials 14, no. 22: 1775. https://doi.org/10.3390/nano14221775
APA StyleManjanath, A., Sahara, R., Kawazoe, Y., & Ohno, K. (2024). Non-Adiabatic Excited-State Time-Dependent GW (TDGW) Molecular Dynamics Simulation of Nickel-Atom Aided Photolysis of Methane to Produce a Hydrogen Molecule. Nanomaterials, 14(22), 1775. https://doi.org/10.3390/nano14221775