Improved Pyroelectric Nanogenerator Performance of P(VDF-TrFE)/rGO Thin Film by Optimized rGO Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO
2.3. Preparation of rGO
2.4. Preparation of Nanocomposite Solution and Thin Film
2.5. Characterization of r-GO and Nanocomposite Thin Film
2.6. Fabrication of PyNG and Constitution of Peltier System
3. Results and Discussion
3.1. XPS Analysis
3.2. FT-IR Analysis
3.3. XRD Analysis
3.4. Electrical Conductivity
3.5. Pyroelectric Nanogenerator Performance
3.5.1. Effect of rGO Reduction
3.5.2. Effect of Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korkmaz, S.; Kariper, A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy 2021, 84, 105888. [Google Scholar] [CrossRef]
- Panwar, L.S.; Panwar, V.; Ansari, M.U.; Anoop, G.; Park, S. Electrical, mechanical, and energy harvesting of a pyroelectric polymer nanocomposite. Curr. Appl. Phys. 2023, 52, 37–44. [Google Scholar] [CrossRef]
- Tabbai, Y.; Belhora, F.; El Moznine, R.; Hajjaji, A.; El Ballouti, A. Pyroelectric effect in lead zirconate titanate/polyurethane composite for thermal energy harvesting. Eur. Phys. J. Appl. Phys. 2019, 86, 10902. [Google Scholar] [CrossRef]
- Li, H.; Bowen, C.R.; Yang, Y. Phase transition enhanced pyroelectric nanogenerators for self-powered temperature sensors. Nano Energy 2022, 102, 107657. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, S.; Chai, C.; Hao, M.; Zhong, X.; Ying, T.; Guo, J.; Chen, X. Discovery of amantadine formate: Toward achieving ultrahigh pyroelectric performances in organics. Innovation 2022, 3, 100204. [Google Scholar] [CrossRef]
- Jain, A.; Prashanth, K.J.; Sharma, A.K.; Jain, A.; Rashmi, P.N. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, J.; Zhang, H.; Wang, X.; Yang, C.; Zhao, Y. Shear-flow-induced graphene coating microfibers from microfluidic spinning. Innovation 2022, 3, 100209. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z.; Fei, L.; Xiang, Y.; Lin, Y. Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 2019, 54, 6401–6409. [Google Scholar] [CrossRef]
- Mishra, S.; Sahoo, R.; Unnikrishnan, L.; Ramadoss, A.; Mohanty, S.; Nayak, S.K. Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites. Mater. Res. Bull. 2020, 124, 110732. [Google Scholar] [CrossRef]
- Ranjan, P.; Tiwary, P.; Chakraborty, A.K.; Mahapatra, R.; Thakur, A.D. Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 2018, 29, 15946–15956. [Google Scholar] [CrossRef]
- Jin, S.; Gao, Q.; Zeng, X.; Zhang, R.; Liu, K.; Shao, X.; Jin, M. Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films. Diam. Relat. Mater. 2015, 58, 54–61. [Google Scholar] [CrossRef]
- Liu, W.; Speranza, G. Tuning the oxygen content of reduced graphene oxide and effects on its properties. ACS Omega 2021, 6, 6195–6205. [Google Scholar] [CrossRef]
- Kuila, T.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 2013, 5, 52–71. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, A. Charge transport mechanism of hydrazine hydrate reduced graphene oxide. IET Circuits Devices Syst. 2015, 9, 392–396. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile Synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Wu, H.; Yang, H.; Zhang, J.; Guo, S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J. Phys. Chem. C 2011, 115, 11957–11961. [Google Scholar] [CrossRef]
- Yang, Z.-Z.; Zheng, Q.-B.; Qiu, H.-X.; Li, J.; Yang, J.-H. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. New Carbon Mater. 2015, 30, 41–47. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474. [Google Scholar] [CrossRef]
- Cataldo, F.; Ursini, O.; Angelini, G. Graphite oxide and graphene nanoribbons reduction with hydrogen iodide. Fuller. Nanotub. Carbon Nanostructures 2011, 19, 461–468. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.-H.; Yoshimura, M. Progress of reduction of graphene oxide by ascorbic acid. Appl. Surf. Sci. 2018, 447, 338–346. [Google Scholar] [CrossRef]
- Phukan, P.; Narzary, R.; Sahu, P.P. A green approach to fast synthesis of reduced graphene oxide using alcohol for tuning semi-conductor property. Mater. Sci. Semicond. Process. 2019, 104, 104670. [Google Scholar] [CrossRef]
- Tran, D.N.; Kabiri, S.; Losic, D. A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 2014, 76, 193–202. [Google Scholar] [CrossRef]
- Sengupta, I.; Kumar, S.S.S.; Pal, S.K.; Chakraborty, S. Characterization of structural transformation of graphene oxide to reduced graphene oxide during thermal annealing. J. Mater. Res. 2020, 35, 1197–1204. [Google Scholar] [CrossRef]
- Escudero, M.; Llorente, I.; Pérez-Maceda, B.; José-Pinilla, S.S.; Sánchez-López, L.; Lozano, R.; Aguado-Henche, S.; de Arriba, C.C.; Alobera-Gracia, M.; García-Alonso, M. Electrochemically reduced graphene oxide on CoCr biomedical alloy: Characterization, macrophage biocompatibility and hemocompatibility in rats with graphene and graphene oxide. Mater. Sci. Eng. C 2020, 109, 110522. [Google Scholar] [CrossRef]
- Pokharel, P.; Truong, Q.-T.; Lee, D.S. Multi-step microwave reduction of graphite oxide and its use in the formation of electrically conductive graphene/epoxy composites. Compos. Part B Eng. 2014, 64, 187–193. [Google Scholar] [CrossRef]
- Jakhar, R.; Yap, J.E.; Joshi, R. Microwave reduction of graphene oxide. Carbon 2020, 170, 277–293. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mandal, D. Envisioned strategy for an early intervention in virus-suspected patients through non-invasive piezo—and pyro-electric-based wearable sensors. J. Mater. Chem. A 2021, 9, 1887–1909. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Lacey, S.D.; Xu, L.; Xie, H.; Li, T.; Danner, V.A.; Hu, L. Reduced graphene oxide film with record-high conductivity and mobility. Mater. Today 2018, 21, 186–192. [Google Scholar] [CrossRef]
- Mohan, V.B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 2015, 193, 49–60. [Google Scholar] [CrossRef]
- Ma, X.; Li, S.; Dong, S.; Nie, J.; Iwamoto, M.; Lin, S.; Zheng, L.; Chen, X. Regulating the output performance of triboelectric nanogenerator by using P (VDF-TrFE) Langmuir monolayers. Nano Energy 2019, 66, 104090. [Google Scholar] [CrossRef]
- Oliveira Jr, O.N.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 2021, 122, 6459–6513. [Google Scholar] [CrossRef]
- Mohan, V.B.; Jayaraman, K.; Stamm, M.; Bhattacharyya, D. Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Film. 2021, 616, 172–182. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Ghosh, T.K.; Rana, D.; Roy, I.; Bhattacharyya, A.; Sarkar, G.; Chakraborty, M.; Chattopadhyay, D. Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property. Mater. Res. Bull. 2016, 79, 41–51. [Google Scholar] [CrossRef]
- Liu, X.; Wen, N.; Wang, X.; Zheng, Y. Layer-by-layer self-assembled graphene multilayer films via covalent bonds for supercapacitor electrodes. Nanomater. Nanotechnol. 2015, 5, 14. [Google Scholar] [CrossRef]
- Faniyi, I.O.; Fasakin, O.; Olofinjana, B.; Adekunle, A.S.; Oluwasusi, T.V.; Eleruja, M.A.; Ajayi, E.O.B. The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. SN Appl. Sci. 2019, 1, 1181. [Google Scholar] [CrossRef]
- Bhaumik, A.; Haque, A.; Taufique, M.F.N.; Karnati, P.; Patel, R.; Nath, M.; Ghosh, K. Reduced graphene oxide thin films with very large charge carrier mobility using pulsed laser deposition. J. Mater. Sci. Eng 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Chew, K.-H.; Shin, F.G.; Ploss, B.; Chan, H.L.W.; Choy, C.L. Primary and secondary pyroelectric effects of ferroelectric 0-3 composites. J. Appl. Phys. 2003, 94, 1134–1145. [Google Scholar] [CrossRef]
- Gan, W.C.; Majid, W.H.A. Enhancing pyroelectric and ferroelectric properties of PVDF composite thin films by dispersing a non-ferroelectric inclusion La2O3 for application in sensors. Org. Electron. 2015, 26, 121–128. [Google Scholar] [CrossRef]
- Gan, W.C.; Majid, W.H.A. Effect of TiO2on enhanced pyroelectric activity of PVDF composite. Smart Mater. Struct. 2014, 23, 045026. [Google Scholar] [CrossRef]
- Lingam, D.; Parikh, A.R.; Huang, J.; Jain, A.; Minary-Jolandan, M. Nano/microscale pyroelectric energy harvesting: Challenges and opportunities. Int. J. Smart Nano Mater. 2013, 4, 229–245. [Google Scholar] [CrossRef]
- Hong, X.; Yu, W.; Chung, D. Electric permittivity of reduced graphite oxide. Carbon 2017, 111, 182–190. [Google Scholar] [CrossRef]
- Habibur, R.M.; Yaqoob, U.; Muhammad, S.; Udin, A.I.; Kim, H.C. The effect of RGO on dielectric and energy harvesting properties of P (VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process. Mater. Chem. Phys. 2018, 215, 46–55. [Google Scholar] [CrossRef]
- Palsaniya, S.; Mukherji, S. Enhanced dielectric and electrtosatice nergy density of electronic conductive organic-metal oxide frameworks at ultra-high frequency. Carbo 2022, 196, 749–762. [Google Scholar] [CrossRef]
- Li, X.; Lu, S.-G.; Chen, X.-Z.; Gu, H.; Qian, X.-S.; Zhang, Q.M. Pyroelectric and electrocaloric materials. J. Mater. Chem. C 2013, 1, 23–37. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef]
- Teyssedre, G.; Bernes, A.; Lacabanne, C. Temperature dependence of the pyroelectric coefficient in polyvinylidene fluoride. Ferroelectrics 1994, 160, 67–80. [Google Scholar] [CrossRef]
- Abbasipour, M.; Khajavi, R.; Yousefi, A.A.; Yazdanshenas, M.E.; Razaghian, F.; Akbarzadeh, A. Improving piezoelectric and pyroelectric properties of electrospun PVDF nanofibers using nanofillers for energy harvesting application. Polym. Adv. Technol. 2019, 30, 279–291. [Google Scholar] [CrossRef]
- Roy, K.; Ghosh, S.K.; Sultana, A.; Garain, S.; Xie, M.; Bowen, C.R.; Henkel, K.; Schmeiβer, D.; Mandal, D. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on go interfaced pvdf nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025. [Google Scholar] [CrossRef]
- Wang, H.; Ng, L.S.; Li, H.; Lee, H.K.; Han, J. Achieving milliwatt level solar-to-pyroelectric energy harvesting via simultaneous boost to photothermal conversion and thermal diffusivity. Nano Energy 2023, 108, 108184. [Google Scholar] [CrossRef]
- Ding, T.; Zhu, L.; Wang, X.Q.; Chan, K.H.; Lu, X.; Cheng, Y.; Ho, G.W. Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting. Adv. Energy Mater. 2018, 8, 1802397. [Google Scholar] [CrossRef]
- Li, H.; Koh, C.S.L.; Lee, Y.H.; Zhang, Y.; Phan-Quang, G.C.; Zhu, C.; Liu, Z.; Chen, Z.; Sim, H.Y.F.; Lay, C.L.; et al. A wearable solar-thermal-pyroelectric harvester: Achieving high power output using modified rGO-PEI and polarized PVDF. Nano Energy 2020, 73, 104723. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Li, X.; Huang, J.; Li, X.; Boong, S.K.; Lee, H.K.; Han, J.; Guo, R. Boosting solar-to-pyroelectric energy harvesting via a plasmon-enhanced solar-thermal conversion ap-proach. Nano Energy 2022, 100, 107527. [Google Scholar] [CrossRef]
Sample | C=C (sp2) | C–C (sp3) | C–O | C=O | O–C=O | OFG Ratio (%) | C/O Ratio |
---|---|---|---|---|---|---|---|
283.20 eV | 284.99 eV | 285.66 eV | 286.29 eV | 287.67 eV | |||
GO | 46.0 | 7.2 | 29.8 | 10.8 | 6.2 | 46.8 | 2.1 |
rGO-SBH | 56.9 | 18.9 | 7.0 | 8.4 | 8.8 | 24.2 | 4.1 |
rGO-Hyd | 59.4 | 16.4 | 10.4 | 5.7 | 8.1 | 24.2 | 4.1 |
rGO-AA-2h | 50.1 | 22.7 | 14.9 | 4.9 | 7.4 | 27.2 | 3.7 |
rGO-AA-1d | 65.3 | 16.8 | 6.0 | 4.4 | 7.5 | 17.9 | 5.6 |
rGO-AA-2d | 70.2 | 12.3 | 5.0 | 3.7 | 8.8 | 17.5 | 5.7 |
rGO-AA-3d | 73.9 | 9.6 | 5.6 | 4.9 | 6.0 | 16.5 | 6.1 |
rGO-HI-1 | 47.3 | 19.0 | 17.1 | 4.2 | 12.4 | 33.7 | 3.0 |
rGO-HI-2 | 50.4 | 17.5 | 13.2 | 7.8 | 11.1 | 32.1 | 3.1 |
rGO-HI-3 | 59.9 | 19.3 | 5.7 | 6.1 | 9.0 | 20.8 | 4.8 |
rGO-HI-4 | 70.1 | 13.8 | 6.1 | 2.2 | 7.9 | 16.2 | 6.2 |
Absorption Peaks (cm−1) | Bond | Functional Groups | Intensity Change in rGO Spectra |
---|---|---|---|
897 | C–O stretching | Epoxy | disappeared |
1056 | C–O–C stretching | Alkoxy | reduced |
1227 | C–O stretching | Epoxy | disappeared |
1394 | C=O stretching | Carbonyl | reduced |
1573 | C=C stretching | Aromatic | maintained |
3300 | O–H stretching | Alcohols | disappeared |
3670 | O–H stretching | Phenols | appeared but reduced |
Samples | 2θ [°] |
---|---|
GO | 12.14 |
rGO-SBH | 26.60 |
rGO-Hyd | 26.60 |
rGO-AA-2h | 26.59 |
rGO-AA-1d | 26.62 |
rGO-AA-2d | 26.64 |
rGO-AA-3d | 26.64 |
rGO-HI-1 | 26.62 |
rGO-HI-2 | 26.62 |
rGO-HI-3 | 26.62 |
rGO-HI-4 | 26.64 |
Material | Temperature Source | ΔT (K) | Power Density (mW/cm2) | p Value (μC/m2∙K) | Reference |
---|---|---|---|---|---|
PVDF/GO | Water | 60 | 20.0 | 38 | [50] |
PVDF-GO nanofibers | Breathing | 22 | 6.2 × 10−4 | 2.7 × 10−2 | [51] |
Au@CNT/PVDF | Sunlight | 41.3 | 1.5 | - | [52] |
CNT/CNC-PVDF | Solar-thermal | 11.2 | 0.9 × 10−4 | - | [53] |
PVDF/rGO-PEI | Solar thermal | 37 | 2.13 × 10−3 | - | [54] |
PVDF/Ag@rGO-PEI | Solar-thermal | 29 | 0.94 | - | [55] |
P(VDF-TrFE)/rGO | Automated Peltier System | 20 | 3.85 | 334 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, H.M.A.; Park, S. Improved Pyroelectric Nanogenerator Performance of P(VDF-TrFE)/rGO Thin Film by Optimized rGO Reduction. Nanomaterials 2024, 14, 1777. https://doi.org/10.3390/nano14221777
Yaseen HMA, Park S. Improved Pyroelectric Nanogenerator Performance of P(VDF-TrFE)/rGO Thin Film by Optimized rGO Reduction. Nanomaterials. 2024; 14(22):1777. https://doi.org/10.3390/nano14221777
Chicago/Turabian StyleYaseen, Hafiz Muhammad Abid, and Sangkwon Park. 2024. "Improved Pyroelectric Nanogenerator Performance of P(VDF-TrFE)/rGO Thin Film by Optimized rGO Reduction" Nanomaterials 14, no. 22: 1777. https://doi.org/10.3390/nano14221777
APA StyleYaseen, H. M. A., & Park, S. (2024). Improved Pyroelectric Nanogenerator Performance of P(VDF-TrFE)/rGO Thin Film by Optimized rGO Reduction. Nanomaterials, 14(22), 1777. https://doi.org/10.3390/nano14221777