Transition Metal-Doped Layered Iron Vanadate (FeV3-xMxO9.2.6H2O, M = Co, Mn, Ni, and Zn) for Enhanced Energy Storage Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Characterization
2.3. Electrochemical Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, S.; Mary, N.L. Review-an overview on supercapacitors and its applications. J. Electrochem. Soc. 2022, 169, 020552. [Google Scholar] [CrossRef]
- Amedzo-Adore, M.; Han, J.I. Chemically lithiated layered VOPO4 by microwave-assisted hydrothermal method and its electrochemical properties in rechargeable Li-ion batteries and supercapacitor applications. J. Alloy Compd. 2022, 911, 165067. [Google Scholar] [CrossRef]
- Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880. [Google Scholar] [CrossRef]
- Jalal, N.I.; Ibrahim, R.I.; Oudah, M.K. A review on supercapacitors: Types and components. J. Phys. Conf. Ser. 2021, 1973, 012015. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef]
- Huggins, R.A. Supercapacitors and electrochemical pulse sources. Solid State 2000, 134, 179–195. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.J.M. Tarascon, Electrical energy storage for the grid: A battery of choices. Science 2000, 334, 928–935. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, N.; Zhang, Y.; Zhou, T. Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: A review. J. Nanopart. Res. 2021, 23, 57. [Google Scholar] [CrossRef]
- Ni, S.; Liu, J.; Chao, D.; Mai, L. Vanadate-based materials for Li-ion batteries: The search for anodes for practical applications. Adv. Energy Mater. 2019, 9, 1803324. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J. Alloys Compd. 2019, 775, 1324–1356. [Google Scholar] [CrossRef]
- Liu, M.C.; Kong, L.B.; Kang, L.; Li, X.; Walsh, F.C.; Xing, M.; Lu, C.; Ma, X.J.; Luo, Y.C. Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: A new family of high performance pseudocapacitive materials. J. Mater. Chem. A 2014, 2, 4919. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Q.; Li, Q.; An, Q.; Zhao, Y.; Peng, Z.; Jiang, Y.; Tan, S.; Yan, M.; Mai, L. Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy 2018, 47, 294–300. [Google Scholar] [CrossRef]
- Chae, M.S.; Setiawan, D.; Kim, H.J.; Hong, S.T. Layered iron vanadate as a high-capacity cathode material for nonaqueous calcium-ion batteries. Batteries 2021, 7, 54. [Google Scholar] [CrossRef]
- Wei, Q.; Jiang, Y.; Qian, X.; Zhang, L.; Li, Q.; Tan, S.; Zhao, K.; Yang, W.; An, Q.; Guo, Y.; et al. Sodium ion capacitor using pseudocapacitive layered ferric vanadate nanosheets cathode. iScience 2018, 6, 212–221. [Google Scholar] [CrossRef]
- Si, Y.; Liu, G.; Deng, C.; Liu, W.; Li, H.; Tang, L. Facile synthesis and electrochemical properties of amorphous FeVO4 as cathode materials for lithium secondary batteries. J. Electroanal. Chem. 2017, 787, 19–23. [Google Scholar] [CrossRef]
- Rani, B.J.; Ravi, G.; Yuvakkumar, R.; Kumar, P.; Hong, S.I.; Velauthapillai, D.; Thambidurai, M.; Dang, C. Ni supported anorthic phase FeVO4 nanorods for electrochemical water oxidation. Mater. Lett. 2020, 275, 128091. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Liu, M.; Zhang, X.; Bu, Y.; Yuan, Y.; Jiang, X.; Yu, A. Synthesis of platinum-decorated iron vanadate nanorods with excellent sensing performance toward n-butylamine. Sens. Actuators B 2016, 236, 173–183. [Google Scholar] [CrossRef]
- Amedzo-Adore, M.; Han, J.I. All layered iron vanadate (FeV3O9.2.1H2O as electrode for symmetric supercapacitor application in aqueous electrolyte. J. Alloy Compd. 2023, 938, 168641. [Google Scholar] [CrossRef]
- Yang, J.H.; Han, D.W.; Jo, M.; Song, K.; Kim, Y.; Chou, S.; Liu, H.K.; Kang, Y.M. Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries. J. Mater. Chem. A 2015, 3, 1005. [Google Scholar] [CrossRef]
- Li, W.; Han, C.; Xia, Q.; Zhang, K.; Chou, S.; Kang, Y.M.; Wang, J.; Liu, H.K.; Dou, S.X. Remarkable enhancement in sodium-ion kinetics of NaFe2(CN)6 by chemical bonding with graphene. Small Methods 2018, 2, 1700346. [Google Scholar] [CrossRef]
- Yang, Z.; Li, G.; Sun, J.; Xie, L.; Jiang, Y.; Huang, Y.; Chen, S. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries. Energy Stor. Mater. 2020, 25, 724–730. [Google Scholar] [CrossRef]
- Mishra, A.; Bera, G.; Mal, P.; Padmaja, G.; Sen, P.; Das, P.; Chakraborty, B.; Turpu, G.R. Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application. Appl. Surface Sci. 2019, 488, 221–227. [Google Scholar] [CrossRef]
- Zhang, K.; Kim, D.; Hu, Z.; Park, M.; Noh, G.; Yang, Y.; Zhang, J.; Lau, V.W.; Chou, S.; Cho, M.; et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nat. Commun. 2019, 10, 5203. [Google Scholar] [CrossRef] [PubMed]
- Yousefipour, K.; Sarraf-Mamoory, R.; Yourdkhani, A. Iron-doped as an effective strategy to enhance supercapacitive properties of nickel molybdate. Electrochim. Acta 2019, 296, 608–616. [Google Scholar] [CrossRef]
- Dong, R.; Ye, Q.; Kuang, L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G.; Wen, Y.; Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 2013, 5, 9508–9516. [Google Scholar] [CrossRef]
- Fengxia, F.; Ruixin, Z.; Tin, Z.; Haoyang, X.; Xiaojuan, W.; Xinxiang, W.; Guilei, T.; Shuhan, W.; Chenrui, Z.; Wei, X.; et al. Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries. Chem. Eng. J. 2023, 477, 147181. [Google Scholar]
- Chenrui, Z.; Ruixin, Z.; Fengxia, F.; Xinxiang, W.; Guilei, T.; Sheng, L.; Pengfei, L.; Chuan, W.; Shuhan, W.; Chaozhu, S. Phase compatible surface engineering to boost the cycling stability of single-crystalline Ni-rich cathode for high energy density lithium-ion batteries. Energy Storage Mater. 2024, 72, 103788. [Google Scholar]
- Chenrui, Z.; Fengxia, F.; Ruixin, Z.; Xinxiang, W.; Guilei, T.; Sheng, L.; Pengfei, L.; Chuan, W.; Shuhan, W.; Chaozhu, S. Structural and charge regulation strategy enabling superior cycling stability of Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2024, 16, 11377–11388. [Google Scholar]
- Sun, C.; Luo, X. Tuning the magnetic and electronic properties of monolayer VI3 by 3d transition metal doping: A first-principles study. Appl. Surf. Sci. 2022, 571, 151208. [Google Scholar] [CrossRef]
- Chu, M.; Huang, Z.; Zhang, T.; Wang, R.; Shao, T.; Wang, C.; Zhu, W.; He, L.; Chen, J.; Zhao, W.; et al. Enhancing the electrochemical performance and structural stability of Ni-rich layered cathode materials via dual-site doping. ACS Appl. Mater. Interfaces 2021, 13, 19950–19958. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Feiteng, W.; Qingqing, C.; Guoliang, W.; Lushan, M.; Chi, C.; Lijun, Y.; Zhiqing, Z.; Daiqian, X.; Hui, Y. Cobalt/zing dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 2020, 8, 3686. [Google Scholar]
- Shunmugapriya, B.; Rose, A.; Maiyalagan, T.; Vijayakumar, T. Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide. Nanotechnology 2020, 31, 285401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yue, L.; Zhang, S.; Feng, Y.; An, L.; Wang, M.; Mi, J. Nickel-doped cobalt molybdate nanorods with excellent cycle stability for aqueous asymmetric supercapacitor. Int. J. Hydrogen Energ. 2020, 45, 8853–8865. [Google Scholar] [CrossRef]
- Zhu, X.; Wei, Z.; Ma, L.; Liang, J.; Zhang, X. Synthesis and electrochemical properties of Co-doped ZnMn2O4 hollow nanospheres. Bull. Mater. Sci. 2020, 43, 4. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Lin, M.; Zhang, D.; Ren, X.; Yuan, Q. Doping effect of Nb5+ on the microstructure and defects of LiFePO4. J. Electrochem. Soc. 2012, 159, A402–A409. [Google Scholar] [CrossRef]
- Li, K.; Shao, J.; Xue, D. Site selectivity in doped polyanion cathode materials for Li-ion batteries. Funct. Mater. Lett. 2013, 6, 1350043. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw Hill, INC: Columbus, OH, USA, 1999. [Google Scholar]
- Li, K.; Xue, D. Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 2006, 110, 11332–11337. [Google Scholar] [CrossRef]
- Ankinovich, E.A.; Bekenova, G.K.; Podlipaeva, N.I. A new hydrous ferrovanadian mineral kazakhstanite Fe53+V34+V125+O39(OH)9.8.55H2O from a carbonaceious-siliceous formation in NW karatau (South Kazakhstan). Zap. Vses. Mineral. Obshch. 1989, 118, 95–100. (In Russian) [Google Scholar]
- Poizot, P.; Laruelle, S.; Touboul, M.; Tarascon, J.M. Wet-chemical synthesis of various iron (III) vanadates (V) by co-precipitation route. C.R. Chim. 2003, 6, 125–134. [Google Scholar] [CrossRef]
- Shin, J.; Yang, J.; Sergey, C.; Song, M.S.; Kang, Y.M. Carbon nanofibers heavy laden with Li3V2(PO4)3 particles featuring superb kinetics for high-power lithium ion battery. Adv. Sci. 2017, 4, 1700128. [Google Scholar] [CrossRef] [PubMed]
- Amedzo-Adore, M.; Yang, J.H.; Han, D.; Chen, M.; Agyeman, D.A.; Zhang, J.; Zhao, R.; Kang, Y.M. Oxygen-deficient P2-Na0.7Mn0.75Ni0.25O2-x cathode by a reductive NH4HF2 treatment for highly reversible Na-ion storage. ACS Appl. Energy Mater. 2021, 4, 8036–8044. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, J.; Park, W.B.; Sun, Y.K.; Myung, S.T. Effect of Mn in Li3V2-xMnx(PO4)3 as high capacity cathodes for lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 40307–40316. [Google Scholar] [CrossRef]
- Amedzo-Adore, M.; Han, J.I. Investigating the pseudo-capacitive properties of interlayer engineered VOPO4 by organic molecule intercalation. Ceram. Int. 2022, 48, 26226–26232. [Google Scholar] [CrossRef]
Degree of Deviation | Co2+ | Mn2+ | Ni2+ | Zn2+ |
---|---|---|---|---|
DFe | −0.0061 | −0.0144 | 0.0814 | 0.1340 |
DV | −0.1668 | −0.1714 | −0.0857 | −0.0335 |
Sample | Peak Position | d-Spacing | FWHM | Crystallite Size |
---|---|---|---|---|
FVO | 8.403 | 10.514 | 0.667 | 126.129 |
Co | 8.305 | 10.638 | 0.776 | 108.324 |
Mn | 8.224 | 10.743 | 1.916 | 43.878 |
Ni | 8.288 | 10.659 | 0.726 | 115.873 |
Zn | 8.329 | 10.607 | 0.820 | 102.595 |
Sample | FVO | Co | Mn | Ni | Zn |
---|---|---|---|---|---|
Specific surface area (m2g−1) | 40.13 | 56.70 | 88.71 | 87.96 | 66.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amedzo-Adore, M.; Han, J.I. Transition Metal-Doped Layered Iron Vanadate (FeV3-xMxO9.2.6H2O, M = Co, Mn, Ni, and Zn) for Enhanced Energy Storage Properties. Nanomaterials 2024, 14, 1765. https://doi.org/10.3390/nano14211765
Amedzo-Adore M, Han JI. Transition Metal-Doped Layered Iron Vanadate (FeV3-xMxO9.2.6H2O, M = Co, Mn, Ni, and Zn) for Enhanced Energy Storage Properties. Nanomaterials. 2024; 14(21):1765. https://doi.org/10.3390/nano14211765
Chicago/Turabian StyleAmedzo-Adore, Mawuse, and Jeong In Han. 2024. "Transition Metal-Doped Layered Iron Vanadate (FeV3-xMxO9.2.6H2O, M = Co, Mn, Ni, and Zn) for Enhanced Energy Storage Properties" Nanomaterials 14, no. 21: 1765. https://doi.org/10.3390/nano14211765
APA StyleAmedzo-Adore, M., & Han, J. I. (2024). Transition Metal-Doped Layered Iron Vanadate (FeV3-xMxO9.2.6H2O, M = Co, Mn, Ni, and Zn) for Enhanced Energy Storage Properties. Nanomaterials, 14(21), 1765. https://doi.org/10.3390/nano14211765