Synergistic Regulation of Phase and Nanostructure of Nickel Molybdate for Enhanced Supercapacitor Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials Synthesis
2.2.1. Synthesis of α-NiMoO4
2.2.2. Synthesis of β-NiMoO4
2.2.3. Synthesis of rGH
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Synthesis and Characterization of NiMoO4
3.2. Electrochemical Performance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muzaffar, A.; Ahamed, M.B.; Hussain, C.M. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability. Renew. Sustain. Energy Rev. 2024, 195, 114324. [Google Scholar] [CrossRef]
- Molahalli, V.; K, C.; Singh, M.K.; Agrawal, M.; Krishnan, S.G.; Hegde, G. Past decade of supercapacitor research—Lessons learned for future innovations. J. Energy Storage 2023, 70, 108062. [Google Scholar] [CrossRef]
- Pandey, D.; Kumar, K.S.; Thomas, J. Supercapacitor electrode energetics and mechanism of operation: Uncovering the voltage window. Prog. Mater. Sci. 2024, 141, 101219. [Google Scholar] [CrossRef]
- He, T.; Kang, X.; Wang, F.; Zhang, J.; Zhang, T.; Ran, F. Capacitive contribution matters in facilitating high power battery materials toward fast-charging alkali metal ion batteries. Mater. Sci. Eng. R Rep. 2023, 154, 100737. [Google Scholar] [CrossRef]
- Yan, Z.; Luo, S.; Li, Q.; Wu, Z.-S.; Liu, S. Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications. Adv. Sci. 2024, 11, 2302172. [Google Scholar] [CrossRef]
- Girirajan, M.; Bojarajan, A.K.; Pulidindi, I.N.; Hui, K.N.; Sangaraju, S. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors. Coord. Chem. Rev. 2024, 518, 216080. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Cheng, L.; Mo, F.; Chen, L.; Yu, S.; Wei, J. 3D Printed Supercapacitor: Techniques, Materials, Designs, and Applications. Adv. Funct. Mater. 2023, 33, 2208034. [Google Scholar] [CrossRef]
- Kumar, R.; Pérez del Pino, A.; Sahoo, S.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A.; Joanni, E. Laser processing of graphene and related materials for energy storage: State of the art and future prospects. Progr. Energy Combust. Sci. 2022, 91, 100981. [Google Scholar] [CrossRef]
- Gopi, C.V.V.M.; Alzahmi, S.; Al-Haik, M.Y.; Kumar, Y.A.; Hamed, F.; Haik, Y.; Obaidat, I.M. Recent advances in pseudocapacitive electrode materials for high energy density aqueous supercapacitors: Combining transition metal oxides with carbon nanomaterials. Mater. Today Sustain. 2024, 28, 100981. [Google Scholar] [CrossRef]
- Liu, X.; Xu, F.; Li, Z.; Liu, Z.; Yang, W.; Zhang, Y.; Fan, H.; Yang, H.Y. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord. Chem. Rev. 2022, 464, 214544. [Google Scholar] [CrossRef]
- Ansari, S.N.; Saraf, M.; Abbas, Z.; Mobin, S.M. Heterostructures of MXenes and transition metal oxides for supercapacitors: An overview. Nanoscale 2023, 15, 13546–13560. [Google Scholar] [CrossRef] [PubMed]
- Zan, G.; Li, S.; Chen, P.; Dong, K.; Wu, Q.; Wu, T. Mesoporous Cubic Nanocages Assembled by Coupled Monolayers With 100% Theoretical Capacity and Robust Cycling. ACS Cent. Sci. 2024, 10, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, B.; Lui, Y.H.; Hu, S. Ni-Mn bimetallic oxide nanosheets as high-performance electrode materials for asymmetric supercapacitors. J. Energy Storage 2019, 25, 100897. [Google Scholar] [CrossRef]
- Yao, P.; Li, C.; Yu, J.; Zhang, S.; Zhang, M.; Liu, H.; Ji, M.; Cong, G.; Zhang, T.; Zhu, C.; et al. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure. J. Mater. Sci. Technol. 2021, 85, 87–94. [Google Scholar] [CrossRef]
- Huai, X.; Liu, J.; Wu, X. Cobalt-doped NiMoO4 nanosheet for high-performance flexible supercapacitor. Chin. J. Struct. Chem. 2023, 42, 100158. [Google Scholar] [CrossRef]
- Li, J.; Zou, Y.; Jin, L.; Xu, F.; Sun, L.; Xiang, C. Polydopamine-assisted NiMoO4 nanorods anchored on graphene as an electrode material for supercapacitor applications. J. Energy Storage 2022, 50, 104639. [Google Scholar] [CrossRef]
- Wang, P.; Ding, X.; Zhe, R.; Zhu, T.; Qing, C.; Liu, Y.; Wang, H.-E. Synchronous Defect and Interface Engineering of NiMoO4 Nanowire Arrays for High-Performance Supercapacitors. Nanomaterials 2022, 12, 1094. [Google Scholar] [CrossRef]
- Hussain, S.; Javed, M.S.; Asim, S.; Shaheen, A.; Khan, A.J.; Abbas, Y.; Ullah, N.; Iqbal, A.; Wang, M.; Qiao, G.; et al. Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 2020, 46, 6406–6412. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, M.; Jiang, G.; Zhang, Z.; Zhou, X. NiMoO4 nanorods@hydrous NiMoO4 nanosheets core-shell structured arrays for pseudocapacitor application. J. Alloys Compd. 2020, 814, 152253. [Google Scholar] [CrossRef]
- Murugan, E.; Govindaraju, S.; Santhoshkumar, S. Hydrothermal synthesis, characterization and electrochemical behavior of NiMoO4 nanoflower and NiMoO4/rGO nanocomposite for high-performance supercapacitors. Electrochim. Acta 2021, 392, 138973. [Google Scholar] [CrossRef]
- Cao, P.; Ji, Z.; Ren, C.; Wang, Y.; Cong, X. NiCoZn-LDH grown with NiMoO4 nanoneedles as a high-performance electrode for supercapacitors. J. Energy Storage 2024, 76, 109829. [Google Scholar] [CrossRef]
- Chang, L.; Chen, S.; Fei, Y.; Stacchiola, D.J.; Hu, Y.H. Superstructured NiMoO4@CoMoO4 core-shell nanofibers for supercapacitors with ultrahigh areal capacitance. Proc. Natl. Acad. Sci. USA 2023, 120, e2219950120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, S.; Deng, C.-y.; Wei, H.-l.; Zhou, J.-h.; Chen, Z.-X.; Yang, H.; Liu, M.-J.; Gu, B.-N.; Chung, C.-C.; et al. Hierarchically Hybrid Porous Co3O4@NiMoO4/CoMoO4 Heterostructures for High-Performance Electrochemical Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 8282–8296. [Google Scholar] [CrossRef] [PubMed]
- Koventhan, C.; Lo, A.-Y. Morphology engineering of novel MnMoO4@NiMoO4 core-shell nanostructure as an electrode material for asymmetric supercapacitor device. Chem. Eng. J. 2024, 485, 149950. [Google Scholar] [CrossRef]
- Acharya, J.; Pant, B.; Ojha, G.P.; Park, M. Unlocking the potential of a novel hierarchical hybrid (Ni-Co)Se2@NiMoO4@rGO-NF core-shell electrode for high-performance hybrid supercapacitors. J. Mater. Chem. A 2022, 10, 7999–8014. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Zheng, X.; Wang, C.; Wang, J.; Jiang, M.; Jiang, D.; Liu, J. Construction of KCu7S4@NiMoO4 three-dimensional core-shell hollow structure with high hole mobility and fast ion transport for high-performance hybrid supercapacitors. Compos. Part B Eng. 2023, 249, 110409. [Google Scholar] [CrossRef]
- Hou, J.-F.; Gao, J.-F.; Kong, L.-B. Enhanced rate and specific capacity in nanorod-like core-shell crystalline NiMoO4@amorphous cobalt boride materials enabled by Mott-Schottky heterostructure as positive electrode for hybrid supercapacitors. J. Energy Chem. 2023, 85, 276–287. [Google Scholar] [CrossRef]
- Hu, K.; Jeong, S.; Elumalai, G.; Kukunuri, S.; Fujita, J.-i.; Ito, Y. Phase-Dependent Reactivity of Nickel Molybdates for Electrocatalytic Urea Oxidation. ACS Appl. Energy Mater. 2020, 3, 7535–7542. [Google Scholar] [CrossRef]
- Ratha, S.; Samantara, A.K.; Singha, K.K.; Gangan, A.S.; Chakraborty, B.; Jena, B.K.; Rout, C.S. Urea-Assisted Room Temperature Stabilized Metastable β-NiMoO4: Experimental and Theoretical Insights into its Unique Bifunctional Activity toward Oxygen Evolution and Supercapacitor. ACS Appl. Mater. Interfaces 2017, 9, 9640–9653. [Google Scholar] [CrossRef]
- Naik, K.K.; Ratha, S.; Rout, C.S. Phase and Shape Dependent Non-enzymatic Glucose Sensing Properties of Nickel Molybdate. ChemistrySelect 2016, 1, 5187–5195. [Google Scholar] [CrossRef]
- Ghoreishian, S.M.; Seeta Rama Raju, G.; Pavitra, E.; Kwak, C.H.; Han, Y.-K.; Huh, Y.S. Controlled synthesis of hierarchical α-nickel molybdate with enhanced solar-light-responsive photocatalytic activity: A comprehensive study on the kinetics and effect of operational factors. Ceram. Int. 2019, 45, 12041–12052. [Google Scholar] [CrossRef]
- Zhu, Z.; Zang, L.; Chu, M.; He, Y.; Ren, D.; Saha, P.; Cheng, Q. Oxygen-vacancy and phosphorus-doping enriched NiMoO4 nanoarrays for high-energy supercapacitors. J. Energy Storage 2022, 54, 105314. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, M.; Wang, J.; Zhao, P.; Yang, X.; Cui, S.; Li, Z.; Jiao, Z.; Cheng, L. Preparation of NiMoO4 nanoarrays electrodes with optimized morphology and internal crystal water for efficient supercapacitors and water splitting. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130119. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Du, T.; Ren, B.; Xu, Y.; Wang, S.; Miao, J.; Liu, Z. A review of carbon materials for supercapacitors. Mater. Des. 2022, 221, 111017. [Google Scholar] [CrossRef]
- Liu, C.-F.; Liu, Y.-C.; Yi, T.-Y.; Hu, C.-C. Carbon materials for high-voltage supercapacitors. Carbon 2019, 145, 529–548. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 2019, 141, 467–480. [Google Scholar] [CrossRef]
- Fan, X.; Xu, H.; Zuo, S.; Liang, Z.; Yang, S.; Chen, Y. Preparation and supercapacitive properties of phosphorus-doped reduced graphene oxide hydrogel. Electrochim. Acta 2020, 330, 135207. [Google Scholar] [CrossRef]
- Tian, W.; Gao, Q.; Tan, Y.; Zhang, Y.; Xu, J.; Li, Z.; Yang, K.; Zhu, L.; Liu, Z. Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon 2015, 85, 351–362. [Google Scholar] [CrossRef]
- Liao, P.; Zeng, Y.; Qiu, Z.; Hao, S.; He, J.; Xu, H.; Chen, S. 3D Ti3C2TX@PANI-reduced graphene oxide hydrogel and defective reduced graphene oxide hydrogel as anode and cathode for high-energy asymmetric supercapacitor. J. Alloys Compd. 2023, 948, 169593. [Google Scholar] [CrossRef]
- Ai, Z.; Li, L.; Huang, M.; Su, X.; Gao, Y.; Wu, J. An Ultrafast, High-Loading, and Durable Poly(p-aminoazobenzene)/Reduced Graphene Oxide Composite Electrode for Supercapacitors. Adv. Funct. Mater. 2023, 33, 2211057. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, J.; Bi, H.; Fu, Y.; Han, Q.; Wang, X. Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to NiO/graphene composites for energy storage. J. Mater. Chem. A 2015, 3, 21682–21689. [Google Scholar] [CrossRef]
- Yoo, M.J.; Park, H.B. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 2019, 141, 515–522. [Google Scholar] [CrossRef]
- Wachs, I.E. Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. Catal. Today 1996, 27, 437–455. [Google Scholar] [CrossRef]
- Saleem, S.S. Infrared and Raman spectroscopic studies of the polymorphic forms of nickel, cobalt and ferric molybdates. Infrared Phys. 1987, 27, 309–315. [Google Scholar] [CrossRef]
- Dhandapani, P.; Nayak, P.K.; Maruthapillai, A. Soft-template assisted morphology tuning of NiMoO4 for hybrid supercapacitors. Electrochim. Acta 2024, 491, 144260. [Google Scholar] [CrossRef]
- Zong, M.; Zhang, X.; Wang, Y.; Huang, X.; Zhou, J.; Wang, Z.; De Yoreo, J.J.; Lu, X.; Rosso, K.M. Synthesis of 2D Hexagonal Hematite Nanosheets and the Crystal Growth Mechanism. Inorg. Chem. 2019, 58, 16727–16735. [Google Scholar] [CrossRef]
- Pallavolu, M.R.; Banerjee, A.N.; Nallapureddy, R.R.; Joo, S.W. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor. J. Mater. Sci. Technol. 2022, 96, 332–344. [Google Scholar] [CrossRef]
- Querejeta-Fernández, A.; Parras, M.; Varela, A.; del Monte, F.; García-Hernández, M.; González-Calbet, J.M. Urea-Melt Assisted Synthesis of Ni/NiO Nanoparticles Exhibiting Structural Disorder and Exchange Bias. Chem. Mater. 2010, 22, 6529–6541. [Google Scholar] [CrossRef]
- Zhuo, S.; Zhang, J.; Shi, Y.; Huang, Y.; Zhang, B. Self-Template-Directed Synthesis of Porous Perovskite Nanowires at Room Temperature for High-Performance Visible-Light Photodetectors. Angew. Chem. Int. Ed. 2015, 54, 5693–5696. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, C.-r.; Jia, X.-d.; Cao, Y.; Yan, J.; Luo, H.-w.; Gao, H.-l.; Ru, Y.; Mei, H.-x.; Zhang, A.-q.; et al. Influence of metallic oxide on the morphology and enhanced supercapacitive performance of NiMoO4 electrode material. Inorg. Chem. Commun. 2020, 112, 107697. [Google Scholar] [CrossRef]
- Eftekhari, A. Surface Diffusion and Adsorption in Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 3692–3701. [Google Scholar] [CrossRef]
- Liu, T.; Chai, H.; Jia, D.; Su, Y.; Wang, T.; Zhou, W. Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 2015, 180, 998–1006. [Google Scholar] [CrossRef]
- Xuan, H.; Xu, Y.; Zhang, Y.; Li, H.; Han, P.; Du, Y. One-step combustion synthesis of porous CNTs/C/NiMoO4 composites for high-performance asymmetric supercapacitors. J. Alloys Compd. 2018, 745, 135–146. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zhang, X.; Yu, D.; Ji, Y.; Sun, Q.; Wang, Y.; Liu, X. Facile synthesis of hierarchical CoMoO4@NiMoO4 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 18578–18584. [Google Scholar] [CrossRef]
- Chu, Y.; Xiong, S.; Li, B.; Qian, Y.; Xi, B. Designed Formation of MnO2@NiO/NiMoO4 Nanowires@Nanosheets Hierarchical Structures with Enhanced Pseudocapacitive Properties. ChemElectroChem 2016, 3, 1347–1353. [Google Scholar] [CrossRef]
- Mousavi-Khoshdel, M.; Targholi, E.; Momeni, M.J. First-Principles Calculation of Quantum Capacitance of Co doped Graphenes as Supercapacitor Electrodes. J. Phys. Chem. C 2015, 119, 26290–26295. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Albornoz, A.; Brito, J.L. Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies. J. Phys. Chem. B 1998, 102, 1347–1355. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Nagamuthu, S.; Muralidharan, G. Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route. ACS Appl. Mater. Interfaces 2013, 5, 2188–2196. [Google Scholar] [CrossRef]
- Dhas, S.D.; Maldar, P.S.; Patil, M.D.; Nagare, A.B.; Waikar, M.R.; Sonkawade, R.G.; Moholkar, A.V. Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 2020, 181, 109646. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, Y.; Ji, X. NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A 2014, 2, 14759–14772. [Google Scholar] [CrossRef]
- Prakash, S.; Paruthimal Kalaignan, G. Investigation of morphological changes on nickel manganese oxide and their capacitance activity. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125875. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, S.-Y. Rationally designed nanosheet-based CoMoO4–NiMoO4 nanotubes for high-performance electrochemical electrodes. RSC Adv. 2016, 6, 10520–10526. [Google Scholar] [CrossRef]
- Wei, C.; Huang, Y.; Yan, J.; Chen, X.; Zhang, X. Synthesis of hierarchical carbon sphere@NiMoO4 composite materials for supercapacitor electrodes. Ceram. Int. 2016, 42, 15694–15700. [Google Scholar] [CrossRef]
- Ezeigwe, E.R.; Khiew, P.S.; Siong, C.W.; Kong, I.; Tan, M.T.T. Synthesis of NiMoO4 nanorods on graphene and superior electrochemical performance of the resulting ternary based composites. Ceram. Int. 2017, 43, 13772–13780. [Google Scholar] [CrossRef]
- Jothi, P.R.; Shanthi, K.; Salunkhe, R.R.; Pramanik, M.; Malgras, V.; Alshehri, S.M.; Yamauchi, Y. Synthesis and Characterization of α- NiMoO4 Nanorods for Supercapacitor Application. Eur. J. Inorg. Chem. 2015, 2015, 3694–3699. [Google Scholar] [CrossRef]
- Cheng, D.; Yang, Y.; Xie, J.; Fang, C.; Zhang, G.; Xiong, J. Hierarchical NiCo2O4@NiMoO4 core–shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. J. Mater. Chem. A 2015, 3, 14348–14357. [Google Scholar] [CrossRef]
- Budhiraju, V.S.; Kumar, R.; Sharma, A.; Sivakumar, S. Structurally stable hollow mesoporous graphitized carbon nanofibers embedded with NiMoO4 nanoparticles for high performance asymmetric supercapacitors. Electrochim. Acta 2017, 238, 337–348. [Google Scholar] [CrossRef]
- Wang, X.; Ding, H.; Luo, W.; Yu, Y.; Chen, Q.; Luo, B.; Xie, M.; Guo, X. Morphology evolution of CoNi-LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability. EcoEnergy 2023, 1, 448–459. [Google Scholar] [CrossRef]
- Youssry, S.M.; Elkodous, M.A.; Kumar, R.; Kawamura, G.; Tan, W.K.; Matsuda, A. Thermal-assisted synthesis of reduced graphene oxide-embedded Ni nanoparticles as high-performance electrode material for supercapacitor. Electrochim. Acta 2023, 463, 142814. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cui, Y.; Song, Y.; Zhou, C. Synergistic Regulation of Phase and Nanostructure of Nickel Molybdate for Enhanced Supercapacitor Performance. Nanomaterials 2024, 14, 1798. https://doi.org/10.3390/nano14221798
Wang Y, Cui Y, Song Y, Zhou C. Synergistic Regulation of Phase and Nanostructure of Nickel Molybdate for Enhanced Supercapacitor Performance. Nanomaterials. 2024; 14(22):1798. https://doi.org/10.3390/nano14221798
Chicago/Turabian StyleWang, Yining, Yuhan Cui, Yue Song, and Chen Zhou. 2024. "Synergistic Regulation of Phase and Nanostructure of Nickel Molybdate for Enhanced Supercapacitor Performance" Nanomaterials 14, no. 22: 1798. https://doi.org/10.3390/nano14221798
APA StyleWang, Y., Cui, Y., Song, Y., & Zhou, C. (2024). Synergistic Regulation of Phase and Nanostructure of Nickel Molybdate for Enhanced Supercapacitor Performance. Nanomaterials, 14(22), 1798. https://doi.org/10.3390/nano14221798