Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Crystal Structure of LTO
3. Synthesis Methods
3.1. Solid-State Synthesis
3.2. Hydrothermal Synthesis
3.3. Sol–Gel Synthesis
3.4. Overview
4. Performance
5. Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, H. Lithium Titanate-Based Anode Materials. In Green Energy and Technology; Springer: Cham, Switzerland, 2015; pp. 157–187. [Google Scholar]
- He, Y.-B.; Li, B.; Liu, M.; Zhang, C.; Lv, W.; Yang, C.; Li, J.; Du, H.; Zhang, B.; Yang, Q.-H.; et al. Gassing in Li4Ti5O12-Based Batteries and Its Remedy. Sci. Rep. 2012, 2, 913. [Google Scholar] [CrossRef] [PubMed]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Mickey, M.S.; Hoffmann, J.; Payne, M.; Lucht, B.L. Effect of Electrolyte Additives on Li4Ti5O12 Cycling Performance and Gas Evolution. J. Electrochem. Soc. 2018, 165, A3925–A3931. [Google Scholar]
- Sato, H.; Yamashita, K.; Yasuda, Y.; Minami, S.; Tsuruta, N. Aqueous Lithium-Ion Battery of Li4Ti5O12/LiMn2O4 Using a Lithium-Ion Conductive Solid Electrolyte Separator. J. Power Sources 2021, 482, 228950. [Google Scholar]
- Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; et al. Lithium Ion Battery Degradation: What You Need to Know. Phys. Chem. Chem. Phys. 2021, 23, 8200–8221. [Google Scholar] [CrossRef]
- Chen, H.; Chahbaz, A.; Yang, S.; Zhang, W.; Sauer, D.U.; Li, W. Thermodynamic and Kinetic Degradation of LTO Batteries: Impact of Different SOC Intervals and Discharge Voltages in Electric Train Applications. eTransportation 2024, 21, 100340. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, M.; Shen, X.; Wu, Q.; Zhang, X.; Huan, L.; Diao, G. Preparation of Li4Ti5O12 Nanosheets/Carbon Nanotubes Composites and Application of Anode Materials for Lithium-Ion Batteries. Electrochim. Acta 2016, 204, 92–99. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Huang, Z.; Oh, S.; Yu, Y.; Mai, Y.-W.; Kim, J.-K. Urchin-like Li4Ti5O12–Carbon Nanofiber Composites for High-Rate Performance Anodes in Li-Ion Batteries. J. Mater. Chem. 2012, 22, 12133. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, Y.; Wu, J.; Yao, J. Graphene Oxide-Confined Synthesis of Li4Ti5O12 Microspheres as High-Performance Anodes for Lithium-Ion Batteries. Electrochim. Acta 2015, 165, 422–429. [Google Scholar] [CrossRef]
- Weng, W.; Kurihara, R.; Wang, J.; Shiratori, S. Electrospun Carbon Nanofiber-Based Composites for Lithium-Ion Batteries: Structure Optimization towards High Performance. Compos. Commun. 2019, 15, 135–148. [Google Scholar] [CrossRef]
- Long, Z.; Yuan, L.; Shi, C.; Wu, C.; Qiao, H.; Wang, K. Porous Fe2O3 Nanorod-Decorated Hollow Carbon Nanofibers for High-Rate Lithium Storage. Adv. Compos. Hybrid Mater. 2021, 5, 370–382. [Google Scholar] [CrossRef]
- Sui, D.; Si, L.; Li, C.; Yang, Y.; Zhang, Y.; Yan, W. A Comprehensive Review of Graphene-Based Anode Materials for Lithium-Ion Capacitors. Chemistry 2021, 3, 1215–1246. [Google Scholar] [CrossRef]
- Zhu, B.; Pu, Y.; Tang, W.; Tang, H. Li4Ti5O12@Carbon Nanotube Arrays as High-Performance Anode for Li-Ion Batteries. RSC Adv. 2024, 14, 28779–28782. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, X.-L.; Liu, H.-J.; Xiong, H.-M.; Zhang, P.-W.; Xia, Y.-Y. Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation. J. Electrochem. Soc. 2007, 154, A692. [Google Scholar] [CrossRef]
- Battery University. BU-205: Types of Lithium-Ion. Battery University, 18 September 2010. Available online: https://batteryuniversity.com/article/bu-205-types-of-lithium-ion (accessed on 1 July 2024).
- Thauer, E.; Ottmann, A.; Schneider, P.; Möller, L.; Deeg, L.; Zeus, R.; Wilhelmi, F.; Schlestein, L.; Neef, C.; Ghunaim, R.; et al. Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries. Molecules 2020, 25, 1064. [Google Scholar] [CrossRef]
- Stenina, I.A.; Shaydullin, R.R.; Desyatov, A.V.; Kulova, T.L.; Yaroslavtsev, A.B. Effect of Carbon and N-Doped Carbon Nanomaterials on the Electrochemical Performance of Lithium Titanate-Based Composites. Electrochim. Acta 2020, 364, 137330. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Wen, Y.; Ma, C.; Chen, X.; Wen, X.; Tang, T.; Mijowska, E. Three-Dimensional Porous Carbon with Big Cavities and Hierarchical Pores Derived from Leek for Superior Electrochemical Capacitive Energy Storage. Diam. Relat. Mater. 2019, 98, 107522. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Pan, W.; Yang, R.; Sun, X. Self-Template Synthesis of Nitrogen-Doped Hollow Carbon Nanospheres with Rational Mesoporosity for Efficient Supercapacitors. Materials 2021, 14, 3619. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.; Leconte, Y.; Fisher, A.C.; Madhavi, S.; Li, L. A Review on Design Strategies for Carbon-Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, D.; Xi, D.; Sheng, X. A Review of Spinel Lithium Titanate (Li4Ti5O12) as Electrode Material for Advanced Energy Storage Devices. Ceram. Int. 2021, 47, 5870–5895. [Google Scholar] [CrossRef]
- Sandhya, C.P.; John, B.; Gouri, C. Lithium Titanate as Anode Material for Lithium-Ion Cells: A Review. Ionics 2014, 20, 601–620. [Google Scholar] [CrossRef]
- Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142, 1431–1435. [Google Scholar] [CrossRef]
- Müller, U. Symmetry Relations Between Crystal Structures. Available online: https://www.xray.cz/kryst/mueller.pdf (accessed on 3 August 2024).
- Wang, G.X.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. Spinel Li[Li1/3Ti5/3]O4as an Anode Material for Lithium Ion Batteries. J. Power Sources 1999, 83, 156–161. [Google Scholar] [CrossRef]
- Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J.-C.; Olivier-Fourcade, J.; Tirado, J.L.; Corredor, J.I.; Pérez Vicente, C. Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chem. Mater. 2004, 16, 5721–5725. [Google Scholar] [CrossRef]
- Jovic, N.; Antic, B.; Kremenovic, A.; Spasojevic-de Bire, A.; Spasojevic, V. Cation Ordering and Order–Disorder Phase Transition in Co-Substituted Li4Ti5O12 Spinels. Phys. Status Solidi A 2003, 198, 18–28. [Google Scholar] [CrossRef]
- Kubiak, P.; Garcia, A.; Womes, M.; Aldon, L.; Olivier-Fourcade, J.; Lippens, P.E.; Jumas, J.C. Phase Transition in the Spinel Li4Ti5O12 Induced by Lithium Insertion. J. Power Sources 2003, 119–121, 626–630. [Google Scholar] [CrossRef]
- Zonghai, C.; Belharouak, I.; Sun, Y.-K.; Amine, K. Titanium-Based Anode Materials for Safe Lithium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 959–969. [Google Scholar]
- Sorensen, E.M.; Barry, S.J.; Jung, H.K.; Rondinelli, J.; Vaughey, J.T.; Poeppelmeier, K.R. Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties. Chem. Mater. 2005, 18, 482–489. [Google Scholar] [CrossRef]
- Mokaripoor, E.; Kazeminezhad, I.; Daneshtalab, R. Improving the Electrochemical Properties of LTO/rGO Nanocomposite Using PVDF:PMMA as a Binary Composite Binder in Li-Ion Batteries. J. Energy Storage 2024, 84, 110812. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Y.; Rui, X.; Qi, D.; Luo, Y.; Leow, W.R.; Chen, S.; Guo, J.; Wei, J.; Li, W.; et al. Conductive Inks Based on a Lithium Titanate Nanotube Gel for High-Rate Lithium-Ion Batteries with Customized Configuration. Adv. Mater. 2016, 28, 1567–1576. [Google Scholar] [CrossRef]
- Peramunage, D.; Abraham, K. Preparation of Micron-Sized Li4Ti5O12 and Its Electrochemistry in Polyacrylonitrile Electrolyte-Based Lithium Cells. J. Electrochem. Soc. 1998, 145, 2609–2615. [Google Scholar] [CrossRef]
- Hsiao, K.-C.; Liao, S.-C.; Chen, J.-M. Effect of Microstructure on the Electrochemical Property of Li4Ti5O12 as an Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2008, 53, 7242–7247. [Google Scholar] [CrossRef]
- Guo, X.; Xiang, H.F.; Zhou, T.P.; Li, W.H.; Wang, X.W.; Zhou, J.X.; Yu, Y. Solid-State Synthesis and Electrochemical Performance of Li4Ti5O12/Graphene Composite for Lithium-Ion Batteries. Electrochim. Acta 2013, 109, 33–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, L.; Huang, J.; Wang, D.; Wu, J.; Cai, Y. Hydrothermal Synthesis of Li4Ti5O12 Microspheres with High Capacity as Anode Material for Lithium-Ion Batteries. Ceram. Int. 2013, 39, 2695–2698. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Hon, M.-H.; Kuan, C.-Y.; Leu, I.-C. Hydrothermal Synthesis of Li4Ti5O12 Nanosheets as Anode Materials for Lithium-Ion Batteries. RSC Adv. 2015, 5, 35224–35229. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A. Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries. Micromachines 2024, 15, 310. [Google Scholar] [CrossRef]
- Purwamargapratala, Y.; Sujatno, A.; Sabayu, Y.L.; Kartini, E. Synthesis of Li4Ti5O12 (LTO) by Sol-Gel Method for Lithium-Ion Battery Anode. IOP Conf. Ser Mater. Sci. Eng. 2019, 53, 0120625. [Google Scholar] [CrossRef]
- Shin, D.S.; Kim, H.G.; Ahn, H.S.; Jeong, H.Y.; Kim, Y.-J.; Odkhuu, D.; Tsogbadrakh, N.; Lee, H.-B.; Kim, B.H. Distribution of Oxygen Functional Groups of Graphene Oxide Obtained from Low-Temperature Atomic Layer Deposition of Titanium Oxide. RSC Adv. 2017, 7, 13979–13984. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Li, W.; Chen, M.; Qu, M. Graphene Oxide/Lithium Titanate Composite with Binder-Free as High Capacity Anode Material for Lithium-Ion Batteries. J. Power Sources 2015, 273, 754–760. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Wang, F.; Chi, H. Evolution of Oxygen Content of Graphene Oxide for Humidity Sensing. Molecules 2024, 29, 3741. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Z.; Mao, J. Mechanisms of the Decrease in Low-Temperature Electrochemical Performance of Li4Ti5O12-Based Anode Materials. Sci. Rep. 2017, 7, 15292. [Google Scholar] [CrossRef] [PubMed]
- Seroka, N.S.; Luo, H.; Khotseng, L. Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review. Batteries 2024, 10, 144. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ. Sci. 2019, 12, 1751–1779. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Suárez-Hernández, L.; Ardila-A, A.N.; Barrera-Zapata, R. Morphological and Physicochemical Characterization of Biochar Produced by Gasification of Selected Forestry Species. Rev. Fac. Ing. 2017, 26, 123–130. [Google Scholar] [CrossRef]
- Ji, D.; Kim, J. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries. Nano-Micro Lett. 2023, 16, 2. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, B.; Liu, X.; Liu, J.; Ding, J.; Zhong, C.; Hu, W. Water-In-Salt Electrolyte for Safe and High-Energy Aqueous Battery. Energy Storage Mater. 2021, 34, 461–474. [Google Scholar] [CrossRef]
- Challenges and Possibilities for Aqueous Battery-ProQuest. Proquest.com. Available online: https://www.proquest.com/docview/2819568494?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals (accessed on 31 October 2024).
Sample | Chemical Formula | Space Group | QPA wt% | Crystallite Size (nm) |
---|---|---|---|---|
Sol–gel LTO | Li4Ti5O12 | F d-3m | 99.0 | 561.50 |
Li2TiO3 | C 1 2/c 1 | 1.0 | 855.03 | |
Commercial LTO | Li4Ti5O12 | F d-3m | 57.7 | 396.42 |
Li2TiO3 | C 1 2/c 1 | 42.3 | 383.30 |
Materials | Synthesis Method | Reaction Temperature | Annealing Temperature | Sample Morphology | Reference |
---|---|---|---|---|---|
LTO | Solid-state reaction | 850 °C | Spherical | [33] | |
LTO/graphene | Solid-state reaction | 850 °C for 12 h | Network structure | [35] | |
LTO | Hydrothermal | 180 °C for 24 h | 500 °C for 10 h | Spherical | [36] |
LTO | Hydrothermal | 180 °C for 12 h | 550 °C for 6 h | Nanosheets | [37] |
LTO/ CNTs | Hydrothermal | 180 °C for 36 h | 700 °C for 6 h | Nanosheet network | [8] |
LTO/rGO | Hydrothermal | 180 °C for 36 h | 600 °C | Spherical | [10] |
LTO | Sol–gel | 80 °C for 6 h | 800 °C for 1 h | Nanosheets | [39] |
LTO/carbon nanofibers (5% w/w) | Sol–gel | 60 °C for 24 h | 800 °C for 12 h | Urchin-like shape | [9] |
LTO/carbon nanofibers | Sol–gel | 60°C for 24 h | 800 °C for 12 h | Corn-shaped particles | [9] |
Anodes | Samples Morphology | Capacity (mAhg−1)/Discharge C-Rate | Annealing Temperature (°C) | Electrolyte | Reference |
---|---|---|---|---|---|
LTO | Spherical | 160/0.02 | 850 | 1MLiPF6EC:PC (1:1) | [33] |
LTO | Solid-state reaction | 144/2 | 800 | 1M LiPF6EC:PC:DMC (3:2:5) | [34] |
C-LTO/graphene | Network structure | 177/0.2 | 850 | 1M LiPF6EC:DEC (1:1) | [35] |
LTO NSs | Spherical | 172/0.1 | 500 | 1M LiPF6EC:DMC (1:1) | [36] |
LTO | Nanosheets | 175 | 550 | 1M LiPF6 EC:DEC (1:1) | [37] |
LTO | Nanosheets | 170 | 500 | [39] | |
LTO/rGO | Spherical | 167/162 after 100 cycles/0.5 | 600 | 1M LiPF6 EC:DMC (1:1) | [10] |
LTO/CNTs | Nanosheet network | 145/135 after 1000 cycles/2 | 700 | 1M LiPF6 EC:DMC:EMC (1:1:1) | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolopoulou, M.; Vernardou, D.; Passerini, S. Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries. Nanomaterials 2024, 14, 1799. https://doi.org/10.3390/nano14221799
Apostolopoulou M, Vernardou D, Passerini S. Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries. Nanomaterials. 2024; 14(22):1799. https://doi.org/10.3390/nano14221799
Chicago/Turabian StyleApostolopoulou, Maria, Dimitra Vernardou, and Stefano Passerini. 2024. "Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries" Nanomaterials 14, no. 22: 1799. https://doi.org/10.3390/nano14221799
APA StyleApostolopoulou, M., Vernardou, D., & Passerini, S. (2024). Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries. Nanomaterials, 14(22), 1799. https://doi.org/10.3390/nano14221799